The Pegasus Autocode
by B. Clarke and G. E. Felton

Summary: A simplified method of preparing certain programs for the Ferranti Pegasus
Computer is described from the point of view of the user, who need have no knowledge of
ordinary programming. The programming techniques used to make the computer accept
this kind of program are also discussed, together with the reasons for choosing them.

INTRODUCTION

Experience with the Ferranti Mark I Computer at
Manchester University showed that it was possible to
reduce considerably the time needed to prepare certain
kinds of program by using a conversion program known
as the Mark I Autocode (Brooker, 1956, 1958). It was
consequently decided to prepare a similar program for
the Ferranti Pegasus Computer. As far as the differences
between the two machines allowed, the main features of
the Mark I Autocode have been retained and, while
there are some omissions, a number of useful additional
facilities have been provided. The scheme is particularly
well suited to occasional users with relatively small
scientific or technical problems to be solved and who
do not wish to go to the trouble of learning the normal
programming methods: often only a day or less is
nceded to learn the simplified technique used with the
Autocode, and programs can then be casily and quickly
written down. Use of the scheme entails a reduction
in the effective speed of computation, but this is fre-
quently acceptable because of the very great reduction
in programming time.

We give first a description of the scheme from the
point of view of the user, and then describe some of the
techniques used to make it realizable.

A BRIEF DESCRIPTION OF THE AUTOCODE

The calculation which is to be performed must first be
broken down into a sequence of simple steps, each of
which is written down as an Autocode instruction (or
order); the sequence of instructions forms the progran
of the calculation. When this program has been prepared
it is then typed out, more or less as written, on a tele-
printer or a keyboard perforator. This produces a
length of punched paper tape, called the program tape,
which can be read into the computer by the Autocode
routine. At this stage the instructions making up the
program are simply converted into a suitable form and
stored inside the computer; they are not obeyed. At
the end of the tape are some special symbols which cause
the machine to start obeying the program it has just
read in, i.e. to start the calculation.

Numbers of two kinds are handled by Autocode
instructions:

(a) Variables denoted by +0, »1, ¢2, ..., ¢1379. These
are chiefly the numbers to be computed, inter-
mediate quantities or data. They may be of
virtually any size (up to about 107 in magnitude)

192

and are dealt with to a precision of about 8 or 9
significant figures.

(h) Indices denoted by n0, nl, n2, n27. These are
signed integers (up to 8191 in magnitude) which
are intended mainly for counting and for use as
suffixes for the variables (see below).

CALCULATING INSTRUCTIONS

Most of the Autocode instructions take the form of an
equation giving the new value of a variable (or index) in
terms of one or two numbers or previously calculated
variables (or indices). For example

rlo= 2 03
is an instruction to replace r1 by the sum of +2 and 3.
Numbers can be written instead of variables on the
right-hand side, thus the instruction

9~ 9 1-46
causes the value of ¢9 to be reduced by 1:46. As an
example of a sequence of instructions, suppose we have
to evaluate
(1 - 0-32:2)/(1-68 - +3)

from previously calculated values of 2 and »3 and put
“the result in 0. The following instructions can be used
(1 is used as working space):

0 --0-32 - 2
0 =1 0

el |-68 "3
0 r0frl

This sequence of instructions could
complete program.

Notice how the process has been broken down into
steps involving only two variables or numbers on the
right: some instructions involve only onz, for example

8 = rdorr6 - r2o0rr6 -~ 43-3
There are similar instructions for handling indices, for
example

form part of a

ng — n3 n2orn 95 n0

but indices can take only integral values. As a rule
indices and variables cannot be mixed in the same
instruction, but a few simple instructions of this type
have been provided. Certain elementary functions can
be evaluated by a single instruction: for example
28 - SQRT »8

finds the square root of 8 and places it in +28.

The permissible instructions of this type are sum-

¥202 YoJe\ 0z uo 1senb Aq 1//0€1/26 L/¥/L/81o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Pegasus

marized in Table 1, in which ¢1, ¢2, ©3 and nl, n2, n3
are simply representative variables and indices. In any
of these instructions a minus sign may be written after
the equals sign, thus vl = — 12 — 3 and v4 = — LOG 18
are permissible. Non-negative numbers (or integers)
may be put instead of any variable (or index) on the
right-hand side.

The results of the calculation can be printed by using
output instructions: these usually consist of the word
PRINT followed by the variable or index to be printed
and an integer (or index) specifying the style desired.
To aid in diagnosing errors we may also write XP (or SP)
before any calculating instruction to cause printing of
the result of the instruction on a new line (or the same
line); this kind of output can be suppressed by the use
of a key on the control panel of the computer. The
available output instructions are summarized in Table 2:
the style number may be given as an index or may be
written explicitly as an integer in the instruction.

JUMP INSTRUCTIONS

Autocode instructions are usually obeyed in the order
in which they are written down. Jump instructions have
been provided to break this sequence and so to provide
the possibility of selecting alternative courses of action.
The instruction to which a jump is made is identified by
giving it a label: this is a small unsigned integer written
in front of the instruction and separated from it by a
right bracket. Thus the instruction

6) 3 4 2

is labelled 6. Any instruction can be labelled. The
first instruction in a program is automatically labelled O:
there is no need to write this label in. Typical jump
instructions are

-6 jump (unconditionally) to the instruction
labelled 6,
-~ 6, ¢l -7 jump to the instruction labelled 6

if el 07,
-6, 1 - 7 jump to the instruction labelled 6
if el =7

The available jump instructions are summarized in
Table 3: any combination of the signs shown is per-
missible. If desired. numbers (or integers) may be
written in place of any variable (or index), and expres-
sions such as - - nl are allowed.

USE OF SUFFIXES

Indices may be used as suffixes to any variables
appearing in any instruction. For example we might
use an instruction like this:

rnl — (2 — nsS) - v(—15 -+ n2)

Here the nl, (2 < n5) and (- 15 -+ n2) are to be thought
of as suffixes and may, if desired, be so written, even
though they cannot be printed as such on a teleprinter.
Suffixes can be attached only to variables and must take

Autocode

TABLE 1
CALCULATING INSTRUCTIONS

el=12 vl=2+e3 vl=v2—03 vl=22-03 vl 2[r3
nl=n2 nl=n2-+n3 nl=n2—n3 nl=n2x<n3 nl—n2fn3
vl=n2 vl=n2[n3 nl==12 (nearest integer)

nl = n2#n3 (remainder when #2 is divided by 13)

rl = MOD 2 1 = SIN 2

nl — MOD 2+ (modulus) rl — COS 2

vl = SQRT 2 (square root) r1 = TAN 2

vl = INT 2 (integral part) »1 — CSC 12

rl = FRAC 2 (fractional part) »1 = SEC 2

rl = LOG ¢2 (natural logarithm) 1 = COT ¢2

vl = EXP 2 1 — ARCSIN 2

vl = EXPM 2 (negative ex- r1 - ARCCOS 2
ponential) r1 = ARCTAN 2

Note: There are analogous instructions with a minus sign on the
right-hand side.

TABLE 2
OUTPUT INSTRUCTIONS

PRINT 1, #n2 Print rl in a style determined by n2.

Thus if #2 = 1,000¢ ~ 20h — ¢, then

print b figures before the decimal point

and ¢ after.

If « — 1 printin floating decimal form on
a new line.

If « — 2 printin floating decimal form on
same line.

Ifa - 3 print in fixed-point form on a
new line.

If « = 4 printin fixed-point form onsame
line.

PRINT a1, n2 If ¢ — 3 print nl on new line, or if

a — 4 on same line.

-~

XP before a calculating instruction. Print the result of
the instruction on a new line, unless suppressed.

SP as XP but print on the same linc.

X (or S) before a calculating instruction. Print carriage
return and line feed (or space). Used to lay results
out neatly.

TABLE 3
JUMP INSTRUCTIONS

-1 (unconditional jump)

-1, 02 3 N R TP R
-1, 02 3 -1, on2 o ond
R -3 N -l
T B A) -1, n2 - n3
-1, + 2 ~=w - ¢3 (jump if approximately equal, i.c.

if the two variables agree to #0 significant binary
digits, or say 0-3 n0 significant decimal figures).
-1, = 2 %%+ 3 (jump if not approximately equal).

¥202 YoJe\ 0z uo 1senb Aq 1//0€1/26 L/¥/L/81o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Pegasus Autocode

one of the three forms indicated in the instruction
above.

By using suffixes like these together with jump instruc-
tions we can often take advantage of repetitive features
of a calculation. For example to evaluate and print

(05 > 055) — (06 > r56) + ... L (124 < 174)
we can use the following instructions:
nl 5
0 -0
3) el — enl (50 - nul)

0 0 — »l

nl = nl + 1
-3, nl -+ 25

PRINT 0, 3043

STOP

The last instruction causes the computer to wait until a
certain key is operated on the control panel.

INPUT ORGANIZATION

Normally the complete program is punched on paper
tape and is fed into the store of the computer before
any of its instructions arc obeyed. The punching of
the program tape is quite straightforward; each instruc-
tion is typed out on a teleprinter (or a keyboard per-
forator) and is terminated by the special symbols carriage
return and line feed. The teleprinter is normally on
figure shift and can then be used to type out most of
the instructions (the symbols » and n are available in
this shift): occasional changes to letter shift are neces-
sary, for example, to type out words such as LOG. The
printing produced when the teleprinter keyboard is
operated can be checked against the original program.

At the end of the program tape we must punch some
special instructions to cause the Autocode scheme to
stop reading in the tape and start obeying the program:
these instructions are written in brackets. Any group of
instructions included within brackets is obeyed, starting
with the first, as soon as the whole group has been read
in: if, therefore, we punch some instructions such as the
following

(r2 6-4284
- 0)

at the end of the program tape, the value of 2 is set
and a jump occurs to the start of the program (which is
always automatically labelled 0). Such a group of
instructions is called a bracketed interlude. If the last
instruction of a bracketed interlude is obeyed, and does
not cause a jump, the Autocode input is re-entered, and
more instructions are read and stored in the space
which was occupied by the instructions of the interlude.
Thus the instructions of the bracketed interlude do not
form part of the stored program.

When the program is being obeyed it can cause
further numbers to be read in by using an input instruc-
tion: for example,

6 —~ TAPE

causes a number to be read in from the punched paper

194

tape and put in ©6. Several numbers can be read in at a
time, if desired; the permissible input instructions are
indicated in Table 4.

TABLE 4
INPUT INSTRUCTIONS

rl -~ TAPE Read in one number and set in »1.
rl TAPE n2 Read in n2 numbers and set in v, ¢2.
[AR
rl TAPE = Read in numbers up to L on tape, set
inel, 2, ...
Notes:

1. These read from the main tape reader: to use the second tape
reader write TAPEB instead of TAPE.

2. Integers can be read in and placed in indices by instructions
such as nl TAPE, etc.

3. Input ceases and the next instruction is obeyed if L is read by
any input instruction; also n0 is always set equal to the
number of numbers read in.

4. The instruction vl TAPE 3 causes 3 numbers to be read
into vl, v2, v3.

There are two tape readers, cither of which can be

used. We can alternatively read in further instructions
by writing

TAPE

The new instructions are then added at the end of the
program. There are facilities for leaving the Autocode
program and causing the computer to start obeying
ordinary machine orders, and also for returning to or
calling in the Autocode from machine orders.

The time to read in an Autocode program tape is
about } second per instruction. The instructions are
obeyed at the rate of about 15 to 20 per second.

-

PEGASUS AND THE AUTOCODE

Pegasus is a medium-sized binary computer (Elliott,
Owen, Devonald and Maudsley, 1956). It has a two-
level store, consisting of:

(a) The computing store (or working store), containing
principally 7 accumulators and 48 ordinan
registers grouped into 6 blocks of 8 registers each.
To all of these there is immediate access.

(h) The muain store (or backing store), of 7.168 storage
locations (4,096 in earliecr machines) together
with isolated storage for the Initial Orders and
the engineers’ test programs. This storc is a
magnetic drum with a revolution time of 16 milli-
seconds.

Each word consists of 39 bits and represents a number
or a pair of orders (or instructions): the latter can best
be thought of as single-address orders, although any
accumulator can normally be specified. There are
facilities for modification of the address in any order by
a modifier in a selected accumulator. Orders are obeyed
from the ordinary registers in the computing store and
chiefly affect numbers in the accumulators; simple orders
take about 0-3 msec, multiplication takes 2 msec and

¥202 YoJe\ 0z uo 1senb Aq 1//0€1/26 L/¥/L/81o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Pegasus Autocode

division 5} msec. The main store is divided into 896
blocks (512 on earlier machines), each of 8 words:
information can be transferred into the computing store,
or vice versa, either by blocks or by single words.

In order to reduce scaling difficulties the Autocode
scheme has its variables in floating-point form A4 x 2¢,
with A4 represented by a 30-bit fraction (including a
repeated sign-bit) and @ - 256 by a 9-bit integer: these
two numbers are packed into a single 39-bit word. The
arithmetical operations are therefore carried out to a
precision of rather more than 8 significant decimal
figures, and can deal with numbers up to about 107¢ in
magnitude. The floating-point operations are all pro-
grammed, since the computer has fixed-point orders
only: this was greatly facilitated in fact by the nature of
the order-code. A programmed floating-point operation
takes about 8§ to 15 msec, including unpacking the
operands, packing up the result and testing for over-
flow.

For ease of use the variables of the Autocode scheme
are presented as a continuous series so that, in effect,
there is a single-level store: these variables are kept in
the main store and are transferred when required to the
computing store by single-word transfer orders. When
read in, each Autocode instruction is converted into an
8-word block of information in the main store: the first
half of this block is made up of orders, and the second
half of addresses and parameters. When the program
is obeyed five of the blocks of ordinary registers in the
computing store are more or less permanently occupied
by the “‘inner loop™ of the Autocode: this transfers the
“instruction-blocks™ into the remaining block of the
computing store, selects, transfers and unpacks the
operands, carrics out the appropriate arithmetical
operation and then normalizes, packs and stores the
result. Much of this inner loop is made up of sub-
routines for the floating-point arithmetic: processes not
included in the inner loop are effected by subroutines
read in from the main store. In obeying most Autocode
instructions access is required four times to the main
store, involving a total mean waiting time of about
32 msec: this is roughly equal to the time spent in
obeying the machine orders, giving an overall speed of
about 15 to 20 Autocode instructions per second.

Normally there is room for 28 indices, 1,380 variables
and 394 instructions (or 210 in earlier machines), but
these numbers can readily be changed by the user should
he require a different allocation of the available storage
space.

REFERENCES

ELLioTT. W. S., OweN, C. E.. DEvoNaLD, C. H., and MauDSLEY, B. G. (1956).

APPLICATIONS

The Autocode is intended mainly for relatively small
scientific or technical calculations, especially those in
which the results are required quickly. Many of these
calculations can be put on to the computer in a very
short time, often a few hours only, once the problem
has been precisely described. This should be contrasted
with the weeks, or even months, which might be required
to program the problem in the ordinary way. The fact
that the running of the program may take much longer
if the Autocode is used may not matter, since it
is often quite brief in any event. There are some
problems in which the cost of the extra machine time is
saved by the reduction in programming costs; many
“one-off” problems are of this kind, the program being
used only once after it has been written. Even if the
program is to be used several times there are advantages
in having the originator prepare the program himself,
which may be impracticable if he has to learn ordinary
programming methods first. In this way many people
throughout an organization can be using the computer
directly on their own calculations, and a general computer
consciousness can spread. In some Autocode programs
it may be advantageous to re-write the “inner loops™ in
ordinary machine language, and hence to achieve nearly
the same speed as if the Autocode had not been used.

An important application, in business as well as
technical calculations, is that in which an Autocode
program is written as a preliminary to the preparation
of a machine-language program. The Autocode version
can be used to test proposed methods and flow-diagrams.
and can very readily be changed in the light of results:
it can also be used to provide a few sets of accurate
results and intermediate values, which can be very useful
in later testing of the machine program: it may also
provide indications of how scaling should be done if the
ultimate program is to work with fixed-point numbers.
This application is specially useful in exploratory work
where it is difficult to see what sort of processes should
be used in the final program.

ACKNOWLEDGEMENTS

The authors wish to acknowledge their indebtedness
to Mr. R. A. Brooker of Manchester University and to
their colleagues, with whom they have had many stimu-
lating discussions: they wish also to thank the Directors
of Ferranti Ltd. for permission to publish this paper and
to thank Mr. B. B. Swann for his continued support
and encouragement.

“The Design Philosophy of Pegasus, a Quantity

Production Computer,” Proc. I.E.E., Vol. 103, Part B, Supplement No. 2, p. 188.
BROOKER, R. A. (1956). “The Programming Strategy used with the Manchester University Mark | Computer,” Proc. l.EE.

Vol. 103, Part B, Supplement No. I, p. 151.
BROOKER, R. A. (1958).
Vol. 1, p. 15 (1958).

195

“The Autocode Programs developed for the Manchester University Computers,”™ The Computer Journal,

¥202 YoJe\ 0z uo 1senb Aq 1//0€1/26 L/¥/L/81o1e/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

