A Method for the Reduction of Empirical Multi-Variable Functions
by C. D. Allen

Summary: A method is given for reducing an empirically given function of many variables

to an expression involving functions of each variable singly.

required is minimized for a given accuracy.

a digital computer.

INTRODUCTION

When dealing with functions of several variables
whose values have been empirically determined, it is
often useful to be able to express the function as an
algebraic expression in functions of each variable singly,
e.g. in the form

Ay, v, . ..) = il b ()b (1) . .. (1)

The problem thus arises of finding values to be given
to the ¢,.(v), etc.,, which are in some sense optimum
values, given a table of values of ¢. One possible
criterion for an optimum set is that the values should
satisfy (1) to a specified degree of accuracy, with a value
of n as low as possible.

For example, in analogue computers, the direct
generation of functions of more than one variable is
difficult, the degree of difficulty rising rapidly with the
number of independent variables. However, many types
of function generator have been described (Korn and
Korn, 1956) which will multiply a variable input by an
empirical function of a single variable, and can thus be
arranged as an analogue of the right-hand side of (1).
To economize in equipment, the number of functions
required should be as small as possible, and it may be
desirable to give the functions special properties, such
as that of being of one sign only.

It has also been pointed out to the author that an
expression such as (1) may be of use in storing tables of
functions of many variables in a digital computer,
requiring less storage space than the original table.
Here also it is desirable to keep the number of functions
as low as possible.

An analytic method is described for determining values
of the ¢,(x), etc., for the given values of the variables,
from the given values of ¢. Functions of one variable
are found one at a time, in such a way that the errors in
equation (1) are minimized by each successive function.
The actual errors remaining may be calculated, or simpler
criteria may be used to estimate the degree of approxi-
mation attained. The corresponding functions of the
remaining variables are then calculated. The whole of
the computational work may be performed on a digital
computer.

The case of two independent variables is described
first, and its extension to three or more variables
thereafter.

The number of functions

A method of altering such expressions without
losing accuracy is also described. Some notcs are given on programming the problem for
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MATRIX FORMULATION OF THE PROBLEM

We now assume that values of the required function
#(x, 1) of two variables are given for all combinations
of values:

XX, )/ | A

y= Ty, g = 1...8,

of the variables, and that these values are sufficient
adequately to define the function over the ranges con-
sidered. We then require values of the functions
¢,(x) and (1) such that:

n

(X, 1) EI b () (), po 1 x 2)
g 1...B

to a satisfactory accuracy.
Now write

Ty PN 1)
aye - h(X,)
Dy (1)
then (2) becomes
n
Log ZI a,b,,

’

or F  AB (3)

where F is a (x, f) matrix of the given values of .
A and B are matrices whose columns are sets of values
of the required functions. A4 and B are to have as few
columns as possible.

It should be noted here that the rank of a product of

two matrices cannot exceed the rank of either factor
(Aitken, 1951), hence the rank of AB’ cannot exceed #,
while the rank of F may well be the lesser of x and 8,
particularly if the values of ¢(x, 1) are empirically deter-
mined. Thus for exactness in equation (3), the number
of columns in 4 and B would need to be large, if a
large number of values of x and 1 were used to specify
¢ in detail. However, it is often found possible to
approximate satisfactorily to F with a matrix of much
lower rank, thus obtaining a good approximation in
cquation (3) with few columns in 4 and B.

THE DETERMINATION OF A
We now show that an additional condition

BB~ 1
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Reduction of Multi-Variable Funciions

may be imposed on B without loss of generality. For
considering any two columns i; and #,, of B we may
write
'/’/ (“/;m : ‘,/’/1

‘/11 |’ (/lm B 0~

and in terms of the functions of 1 we shall have

l/’l(."{[) (“/}m( ,1“/) : (/j/l (,‘.q)’ q ... B’

and the appropriate terms of equation (2) become

d’l(»\'::)[ai/lm( ,“z/) 1 (///I(.“q)] 1 d’;;;(-\'p) . 11[’/11( ,yq)
) ¢)I(-\‘p) . l///l (,‘VL/) . [u¢1(»\‘1;) T Qbm(-\',;)]m(,l\,)
(b/(-\'p) . l/’/] (,l‘q) (161711 ('\‘/1) . l/}m( ,“q)
in which no increase in the number of functions has
occurred.
Also we may arrange that
oo =1

by extracting suitable scalar factors from the (1) and
incorporating them in the ¢,(x). When these modifica-
tions are made we obtain matrices 4, and B, of the same
size as before, such that

where

A, .B ~ A.B - F (4)

and B, .B, — I (5)
We now have

R - F.F — A .B .B .A — A .4 (6)

and it is this equation which we solve for 4, column by
column so as to minimize the residuals

R Ay A (7)
at each stage.

In equation (6) we have effectively shown that R
contains the variation in ¢ due to x, but not that due
to ». Thus to obtain accuracy in the final expansion,
as much as possible of this variation must be accounted
for by the matrix 4,. Thus the residuals (7) may be
used as a reliable guide to the errors in the final expansion
obtained with a given A4,.

Note that R is symmetric of order «.

The residuals (7), after the first column of A4, has been
found, are

Ry = R — ‘151 . ‘?—”1‘
where we write ¢, for the rth column of 4,, or

T

e d

ji
and, for the sum of the squares of these to be a minimum
with variation of the a;;, we require

> uﬁ(";/ - dj «”jl) -0
or, writing A= X aj
7
and VALV = ?"l (8)
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where ViV, =1 9

we require R.V, — AV, =0. (10)

Now (9) and (10) are the defining equations for a
latent root and vector of R, and the appropriate values
of ¢,(x) are given by (8). The residuals are then

R, = R - NV V|

and it is obvious from this that A, must be the greatest
latent root of R.

Further functions of x may be found from R, in a
similar fashion. Now it is well known that a symmetric
matrix such as R may be expanded as

P
R-- X AVV,, (1)
ro1
thus the latent roots and vectors of R, are the remaining
latent roots and vectors of R. Thus all the required
functions of x are of the form

b AV,

where A, and V, are the latent roots and vectors of R.

For exact equality in (11) we must include all the
non-zero latent roots of R, and their number is the rank
of R. However, it is usually found that the first few
largest roots contribute the majority of this expansion,
and these only need be retained. The latent roots of a
symmetric matrix are all positive and their sum is the
sum of the diagonal elements of the matrix (its trace or
spur). Thus, as each root and vector is found, an upper
bound to the magnitude of the next largest root may
be found, and a decision made as to whether it is worth
extracting.

If any doubt remains, the residuals

Rr: R - ZArVrVr( (I:)
s o1

may be inspected. These usually bear a similar ratio to
the elements of R as the eventual errors in (2) do to
the values of ¢. Alternatively, the actual errors in (2)
may be calculated at this stage, as will be explained later.

THE DETERMINATION OF B,

We have now obtained a («, p) matrix 4, approxi-
mately satisfying (6), and we wish to find B, where

AIBIV = F

to as high an accuracy as possible. This equation
represents a set of xf simultaneous equations in the
pB unknowns b;. These must therefore be normalized
to give

AI’AIB{”AI,F (13)

which represents 8 sets of p equations in p unknowns,
one set being obtained from each column of F with the
corresponding row of B;. The values of the appropriate
functions of y are thus obtained as the columns of B,.
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Reduction of Multi-Variable Functions

ERRORS DUE TO INSUFFICIENT FUNCTIONS

It is now possible to see how the errors in equation (2)
resulting from ignoring some of the latent roots of R
may be calculated at that stage. The matrix A, there
obtained is

A, = [V|\'/\1, Vor/As, o1
and by (13) By = (A{A))" 'A/F.

Voa A

Since the V, are latent vectors of a matrix we have

ViV, =20 roAs
=1 r =sby9
and (ATA) — [AL A oA
a diagonal matrix.* Thus we obtain
ACHVL
s |2
AV,

V4
and F— A,B| - (1 S V,V,’) F. (14)
ro1

Thus, when the V, are known, these errors may be
calculated. In practice, determination of the errors in
full from this equation is laborious, and one of the
simpler methods of estimation described above is
normally preferable. Equation (14) may, however, be
used to sample the errors if this is thought necessary.

TRANSFORMATION OF THE SOLUTION

If T is any (p, p) matrix having an inverse T !, we
may write

A\B{ = (A, T '"Y(TB)).
Thus, if 4, and B, give a solution,
Ay = AT
B, = (TB)Y

(15)
(16)

give an equally accurate solution with the same number
of functions. This fact may be used in certain cases to
modify the functions in a desirable manner.

In this connection it is advantageous to consider the
values of the ¢é.)) as being the co-ordinates in a
p-dimensional space of B points on a locus Z, with the
parametric equations

and

o = ).

Equation (16) thus represents some transformation of
the co-ordinates -, in this space, T being the matrix of
the transformation. Two-dimensional projections of Z
may be obtained by plotting one function against
another, and may show that desirable properties of the
functions (such as being constant, or being of one sign
only) may be achieved by a suitable rotation of the axes.
* This fact may be used as a check on the calculation.
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TABLE 1

F vALUES OF GIVEN FUNCTION

¥ 1 2 3 4 5 6
| 980 780 670 618 468 348
2 822 628 537 484 348 240
3 680 494 408 362 238 138
4 558 372 286 248 124 36
5 430 248 166 126 8 70

When the degree of rotation has been selected, the
appropriate matrix 7 may be assembled. If three or
more functions have been obtained, several such trans-
formations may be made successively.

EXAMPLE

In the example to be considered, a function of three
variables, x, v, and -, was to be analysed. A pre-
liminary plot of the function showed that the variation
with = at constant x and y was linear, indicating that
we could expand the function in the form

¢)(~\" L :) - ¢ll('\.’ .l‘) D qsb(-\.s ,l‘)

where ¢,(x, 1) is the slope of ¢ against -, which could
be read from the graphs, and ¢,(x, v) is the value of ¢
atz = 0. The analysis of ¢, and ¢, was then undertaken.

The values of ¢,(x, 1) are shown in Table 1, arranged
to form the matrix F of this example. Since there are
fewer values of 1 than of x, it was decided to eliminate x
first, so the matrix R = FF’ was calculated as in Table 2.
The entries have been multiplied by 10~°: this arbitrary

* factor will be recovered automatically in the solution of
the equations for B,.

Two latent roots and vectors were then found from
this matrix: these, and the corresponding functions of y,
are shown in Table 3. At this stage, since the trace of
R is 6-4953, the sum of the remaining latent roots is
0-0001, and these may be ignored. Thus the function
values in Table 3 are taken as the matrix 4,, and the six
sets of normalized equations

4/4,B  AF

solved for B, which is shown in Table 4. Note that the

factor of 10 5 has been recovered in these functions.
TABLE 2
THE MATRIX R ~ FF’

v 1 2 3 4 s
| 2-7398  2:2007 1-7082  1-2524 0-7833
2 2-2007 1-7714  1-3794  1-0177 0-6453
3 1-7082  1-3794 1-0796 0-8042 0-5205
4 1-2524  1-0177 0-8042 0-6097 0-4094
5 0-7833 0-6453 0-5205 0-4094 0-2948
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Reduction of Multi-Variable Functions

TABLE 3 600 s
DERIVATION OF (1) 4, 1/// X
A, 6:4052 A, - 0-0900 v (1) o 1) /
V, 0-6521 V, -0-4178 1 1-650 -0-1254 400 ] /’
0-5256 -0-1343 2 1-330  —0-0403 7
0-4102 0-1405 3 1-038 0-0422 )/
0-3039 0-4498 4 0-769 0-1349 /
0-1944 0-7651 5 0-492 0-2296 | /)
200 /
/
TABLE 4 /
/
VALUES OF THE ¢(x) ... B, / 600
o <T L
v $1(x) $a(x) 1T %
1 633-6 518-4 /
2 475-3 53-9 /
3 397-5 1304 N .
4 358-0 -214-8 s AN
5 247-0 —489-8 / T~
6 160-9 6519 K #,
/
/
/ =400 /
TABLE 5 / /
/ A
FIRST ERRORS F — A, . B // /
K 1 2 3 4 5 6 -600 | x
I 05 25 22 04 10 —08 /
2 02 20 01 08 02 03 /
3 —0-4 1-6 09 0-5 2.3 1-5 FiG. 1.—Transformation of the functions.
4 —0-8 0-8 21 —1-7 0-1 -0-2 )
5 08 1-8 04 0-8 1-1 0-5 In fact any scalar multiple of the functions of x, such as
the latent vectors themselves, could have been used for A4,.
TABL The errors in the expansion thus obtained, viz.
c o BOW() + B ) )
TRANSFORMED FUNCTIONS are shown in Table 5. As can be seen, the maximum
\ b1(x) ba(v) " SO Pa(r) error is less than 0-3 per cent of the range of ¢,,.
1 393-3 718-0 1 1-577  0-5018 A plot of ¢,(x) against ¢,(x) is shown as Fig. 1, which
> 420-5 7780 o) 1-248  0-4609 shows that the curve is very nearly linear. This figure
3 417-4 28-0 3 0-947  0-4280 indicates that a rotation of the axes through 22" in a
4 412-4 65-1 4 0-662 0-4131 clockwise direction would make ¢,(x) a constant. To
5 412-5 23616 5 0-370  0-3972 perform this operation, the matrix B/ must be premulti-
6 393-4 5442 plied by the transformation matrix
mean 408 cos 22 sin22
T [sin 22 - cos 22}
TABLE 7 and A, must be post-multiplied by T-!. Since T is a
ERRORS FROM TRANSFORMED FUNCTIONS rotation matrix whose determinant is unity, its inverse is
the same as its transpose, so we post-multiply 4, by T,
N The results of these operations are shown in Table 6
v ! : } 4 5 6 where it can be seen that ¢,(x) varies but little, so a mean
| 9] % 15 10 14 14 value can be taken.
> 2 13 10 3 16 13 The errors
3 15 9 -8 -1 8 14 408:1( 1) + o)1) — Bulx, 1)
4 9 ~10 -5 -5 -7 6 are shown in Table 7, and are still within 2-3¢_ of the
5 6 7 -4 0 -5 0 range of ¢,,.
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Reduction of Multi-Variable Functions

FUNCTION OF THREE OR MORE VARIABLES

The example above has shown one method of dealing
with a function of three variables in the case where the
variation of ¢ with one of the variables is linear.
Generally this is not so, but the method may readily be
extended to cover this case as follows.

The function ¢(x, r, 2) is assumed to be defined by its
values for certain combination of values of x, v, and =,
and nothing is assumed concerning the continuity of
the function. We may therefore treat the possible
combinations of values of any two variables (1 and -,
say) as though they were a set of values of a single
variable. By eliminating the variation with this single
variable first, the case may be treated by the same
technique as for two variables. Functions of the
variable x will thus be determined first, and the corre-
sponding functions obtained secondly will be functions
of 1 and - jointly in the expansion

Ay, v, ) = X )Py, o).

These functions of » and - may then be analysed
further.

The method may similarly be extended to treat
functions of any number of variables.

USE OF DIGITAL COMPUTER

The calculations required in the above method are
all of a matrix nature, and therefore repetitive. An
electronic computer may therefore be used with advan-
tage. The calculation may be performed in four stages:

(a) Calculation of R.

(b) Determination of A, and V..

(¢) Calculation of B, and errors F — A, . By.
(d) Calculation of 4, . T 'and T. B'.

Stages (a) and (c¢) are greatly simplified if a matrix
interpretive scheme, such as that designed for Pegasus
(Hunt, 1956), is available. Stage (b) is nowadays a
standard library program on most computers.

Stages (a) and (b) may usually be run concurrently.
Stage (¢) may also be run immediately after stage (b)
provided that an inspection of the latent roots is sufficient
to enable one to decide on the number of functions to be
retained (this is normally the case). In this event, it is
helpful if the latent roots program is compatible with
the matrix interpretive program, in the sense that both
programs may be held in the machine simultaneously,
and either may use the results of the other without
output and re-input. A scheme for setting parameters
into a matrix program is also required, so that the number
of functions chosen may be set on hand-switches and
the program for part (¢) modified accordingly. Stage (/)
can only be completed after inspection of plots of one
function against another, and selection of a suitable
matrix 7.

If a satisfactory number of points is used to define ¢
in detail, a moderately large store is required, particularly
for functions of more than two variables. The 4,000-word
store of Pegasus has been found just adequate for
functions of three variables.
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Index and Binding of Volume 1

An Index to Volume 1 of The Computer Journal is being

prepared and will be available in April 1959. An an-

nouncement regarding the binding of members’ and
subscriters’ copies will also be made in April 1959.
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