A new method of determining eigenvalues and eigenfunctions

By John A. T. Bye*

An analytical solution of the general eigenequation

Y™ (x) = F(x, Y?)
F(x, Y?O) = go(x, YO) + Agy(x, YO) + A2g,y(x, YV)

where

0<r<m

. + Agy(x, YD)

is independently linear in the Y and A%, and Y(x) is the eigenfunction and A is the eigenvalue, is
developed. The eigenfunction is obtained as an analytic function of x, and the eigenvalue A is

the ratio between successive functions in an expansion.

The solution is always convergent, and

can be used as a practical method of computing eigenparameters to a high degree of precision.
Two examples of computer application are given in which the solutions are obtained as power

series.

1. Introduction

In the literature there are numerous methods which
describe the solution of finite-difference approximations
to eigenequations. In this paper, however, we propose a
method of obtaining eigensolutions as analytic functions.
The method is basically an analytical solution of the
general eigenequation

Ym(x) = F(x, Y) o<r<m (€))

where
F(x’ Y(r)) = gO(xa Y(r)) + Agl(xs Y(r)) + A2g2(-x9 Y(r))
.+ Algy(x, YO)

is independently linear in the Y and X, and Y(x) is
the eigenfunction and A is the eigenvalue. Throughout,
the primes denote differentiation w.r.t. x and each g;
may be a linear combination of Y(x) and its derivatives
of the form

g% YO) =% $,(0Y0W) 0<r<m (@

where the ¢;; are arbitrary real functions of x.

The eigenfunction Y(x) is obtained as an analytic
function of x, and the eigenvalue A is the ratio between
successive functions in an expansion. The method
appears in principle to be capable of determining all the
real solutions of the equation, but it is particularly
useful in finding the fundamental eigenparameters. Two
examples of computer application are illustrated in
which the solution is obtained as a power series in x.

2. The general theory of the solution
Let us consider the equation

ym(x) = F(x, y0) + XX(x) 3

which, except for the addition of the arbitrary real

function X (x) on the right-hand side, is analogous to
equation (1) with the function Y(x) replaced by y(x).

We obtain a solution of equation (3) in the form of
the infinite power series

Y(X) = po(x) + Ai(x) + AZpa(X) ... + Xye(x) ... (4)

where the functions y;(x) each satisfy identical homo-
geneous boundary conditions. Substituting for y(x) in
equation (3), and remembering that F(x, y’) is linear
in y©_ we have the following equation

0:R0+AR1+A2R2...+AkRk... (5)

where the R, denote the set of recurrence relations which
is expanded below:

Ry = ¥§7(x) — go(x, ¥§7) — X™(x)
Ry = Y"(x) — go(x, ) — g1(x, ¥§)
R, = y{(x) — go(x, 1) — gi(x, ¥) — &x(x, 3§)

R, = Y (x) — go(x, ¥) — g1(x, ¥ - ..

e —&ix, Y. (6
Solving equation (5) by setting each
R, =0 0< k<) @

we determine the functions y,(x), and hence y(x).
The notable feature of this set of equations is that
R, contains only functions of y(x)

R, contains only functions of yy(x) and y,(x)

R, contains only functions of yy(x), ¥,(x) and y,(x),
etc.
Hence each y, may be determined successively by
applying m homogeneous boundary conditions to the
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Eigenvalues and eigenfunctions

integration of an ordinary and linear differential equation
of the form

PP (x) — golx, ¥9) = x(x)
where

-+ gilx, .Vl(c’li)

is a known function of x involving only previously
determined y,_;. Provided that the expansion (4) is
convergent, therefore, we may calculate y(x) to any
desired degree of accuracy.

Our task now is to relate the function y(x) to an
eigenfunction Y(x) of equation (1).

x() = gi(x, ¥,

3. The eigensolution

Let us consider the special cases of equation (3) in
which |A| is equal to the radius of convergence |Aq| of
the power series (4). Now suppose that the type of
convergence is such that as k —oo, the y,(x) become
similar for all x, and A, is defined by the limit relation,

tim (5 ) = ®

for all x. Then from the set of equations (6) we have,

P (x) = go(x%, Y1) + &1(x, YD) + .- gilx, 32 9)

Hence considering equation (9) in the limit kK —oo0 and
substituting equation (8) we obtain,

hm y("‘)(x) =g, (x 11m y")) 4+ Aogy (x,klim y}c’))
+ .. g (x kll»n:)y('))

—F (x, lim y{ (10)

k—>

But equation (10) is identical in form with our eigen-
equation (1), therefore

Y(x) = lim y,(x) (1n

is an eigenfunction, and A, is the corresponding eigen-
value.

The existence of a limit of the form of equation (8)
therefore implies that equation (1) has a real eigen-
solution. In practice the fundamental eigensolution is
usually obtained, but in special cases the y,(x) may
converge to a harmonic (cf. Example 1). Any reasonable
choice of X(x)* may be made, and the convergence to
the limit has been found to be rapid.

On the other hand, if the convergence is of a different
kind to that described at the beginning of the section,

* If X(x) #0, but X™(x) =0, it should be noted that the
solution y(x) may be interpreted as having homogeneous boundary
conditions on all yx(x) except yo(x).
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i.e. as k — oo, the y,(x) do not become similar, equation
(1) may not have a real eigensolution, although *“special”
values of A can exist. It is hoped that the solution of
an equation of this type will be described in a later paper.

4. Computational techniques

A powerful computational procedure is to express all
the functions, ¢;;(x), of the eigenequation as power series.
It then follows that the eigenfunction is also obtained
as a power series. The higher the approximation (k) of
equation (11), the higher the order, which increases by
at least m for each approximation. Further if

gO(xa Y(r)) =0

the solution is obtained simply by term-by-term inte-
gration of power series, since each recurrence equation
(cf. Section 2) is of the form

¥ (x) = power series (x)
and hence

Yi(x) = J- J-(power series (x))dx dx (12)

Integration (12) yields m boundary constants, which are
satisfied by the homogeneous boundary conditions, and
is particularly simple to program for a computer. The
solution may easily be monitored as obtained by
evaluating each y,(x) at a set of values of x.

5. Examples of solution

The potential value of the general solution is illus-
trated below in two examples. The first example is a
very simple eigenequation of which the closed analytical
solution is known. The second example has many of
the properties of the first example. However, its
analytical solution has not previously been studied. In
this case, we compare our results with finite-difference
estimates.

For convenience, we will not give the actual coef-
ficients of the power series representing the functions y,
but only the evaluations at a series of values of 7

0<n<l
normalized w.r.t. the maximum y,(n).

Example 1

We are required to determine the eigenvalues and
eigenfunctions of the equation

Y"(x) = Adyo(x) ¥(x) (13)
where dro(x) = —
with the boundary conditions
Y0)=0
Y(1) = 0.
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FEigenvalues and eigenfunctions
Table 1

Numerical solutions of Example 1

POWER SERIES EIGENSOLUTIONS
(EXAMPLE 1)
X=1 X=1-—2x
Yi(n) ©-5) Vi) 0-222)
Vi —1U* VeV
k 0-111 0-222  0-333 0-5 —————~ 0-111 0-222 0-333 0-444 ——————=
(e w05 | T »d0-222)
0 1 1 1 1 — 1 0-714 0-428 0-143 —
1 0-395 0-691 0-888 1 8-00 0-88 1 0-772 0-286 34-75
2 0-347 0-648 0-869 1 9-60 0-682 1 0-846 0-328 39-51
3 0-343 0-643 0-866 1 9-84 0-659 1 0-870 0-342 39-66
4 0-342  0-643 0-866 1 9-87 0-654 1 0-877 0-346 39-54
5 0-342  0-643 0-866 1 9-87 0-653 1 0-879 0-347 39-50
6 0-342 0-643 0-866 1 9-87 0-653 1 0-879 0-348 39-48
Substituting in our general equations, we have . 1 —cos /A
= )\ - . N i A
gux, Y = 0 (1) y =cos v/ Ax + ( sin VA ) sin /A x
) — —1— A

81(%, Y0) = b1o()p(x) (i) y = cos 4/Ax + (Ti‘;s)‘l/—) sin +/Ax.  (16)

gi(x9 y(r)) = 0, (l = 2)
d X7 =0 We see immediately that at A = A, there is a singu-

an Ro=yo — = larity in the solutions at which y — oo, in agreement

Ri=y{ — b10¥0 =0 with the behaviour of the power series.

. The results obtained above are in full agreement with

Re= i — b1o¥e_y = O. (14) the solutions of equation (13), known by other methods:

By means of a computer program incorporating
sequence (14) results were obtained for two choices of
X, and evaluated at y = n/18 (where n is an integer,
0 < n< 18). They are recorded in Table 1, and may
be summarized as follows:

i X=1, = 7%, Y =sinnx
@) X=1—2x, A=47% Y=sin27wx. (15)

These two determinations are the fundamental and the
first harmonic of the eigenequation (13).

In solution (15 (i)),
lim y, = asin nx
k—o0
and limy, _, = an?sinx
k —c

where a is an arbitrary multiplier.
Similarly for solution (15 (ii)).

For these two examples, we may also obtain closed
analytical solutions (the expansions of which using the
series for sine and cosine functions exactly reproduce
the power series solutions), as follows:
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Y = sin nmx
A = n2x?

where 7 is an integer.

Example 2

We are required to determine the eigenvalues and
eigenfunctions of the equation

Y'(x) = M1o(x) Y(x) + ¢12(x) Y "(x))

where bio(x) = 3x2 —4x + 1
and b12(x) =6 a7n
with the boundary conditions
Y0) =0
Y”(0)=0
Y()=0
Y'(1) =0.

Substituting in our general equations we have

gO(xa y(r)) =0
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Eigenvalues and eigenfunctions
Table 2

Numerical solutions of Example 2

POWER SERIES FINITE-DIFFERENCE
EIGENSOLUTION EIGENSOLUTION
(EXAMPLE 2) (EXAMPLE 2)
X=x3—2x2+x
Yi(n) . Yi(m) Ay
k 7 0-2 0-4 0-6 0-8 yk_—l(oi n 0-2 0-4 0-6 0-8
| yi(0-4)
0 0-889 1 0-667 0-222 — — — — — —
1 —0-751 —1 —0-751 —0-276 —29-597 * - — — — —24
2 0-732 1 0-765 0-285 —38-040 ¥ — — —_ — —28-5
3 —0-728 —1 —0-767 —0-287 —39-520 * — — — — —31-8
4 0-728 1 0-768 0-287 —39-753 0-73 1 0-79 0-33 —34-09
5 —0-728 —1 —0-768 —0-287 —39-788 T — — — — —
6 0-728 1 0-768 0-287 —39-792 0-73 1 0-79 0-31 —36-60
7 —0-728 —1 —0-768 —0-287 —39-793 0-72 1 0-77 0-30 —37-29
18 0-728 1 0-768 0-287 —39-793 0-73 1 0-77 0-29 —39-33

coarse networks.
1 No eigensolution was found.

* Significant estimates of the finite-difference eigenfunction (from graphs plotted for the network points) cannot be made for

gi(x, y) = ‘f’lo(x)J’(X) + 4’12()‘))’”(3‘)

g&i(x,y”) =0 (i>2)
and
R() — yg” _ X//// — 0

Ry =" — <;{>10J’o - ¢1zyg =0
R, = y{" — 1oy — ‘l’lZyll, =0

Ry =y" — b1oVk—1 — 9512}’;;—1 = 0* (18)

By means of a computer program incorporating
sequence (18), we obtained the fundamental eigen-
solution, which was evaluated at n = n/10, where n is
an integer 0 < n < 10 (cf. Table 2).

The fundamental eigensolution of this example has
also been studied in detail by finite-difference techniques.
We approximated the differentials of the eigenequation
as first-order finite-difference formulae for a set of k
grid points between x = 0 and 1.

The resultant set of equations was then expressed as
the matrix equation

A= AB

where A and B are k X k matrices, and solved by a
standard procedure.

* As A is the highest power of the eigenvalue in equation (17),
the number of terms in Ry does not increase for k > 1. The
maximum number of terms in Ry is equal to the number of terms
in the expanded eigenequation.
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The results are also shown in Table 2. If we compare
the estimate of A obtained with k£ grid points, to that
obtained with a polynomial of order (k), it is notable
that our present method converges much more rapidly.

We may interpret the solution in a rather interesting
way.

In an analogous manner to the sine function which
preserves its form after being integrated twice, the
functions (Y) which are solutions of this example
preserve their form after the linear combination

(b10Y + ¢12Y7)

has been integrated four times.

We thus see in the present type of solution a method
of obtaining generalized functions with specified integral
properties.

6. Conclusion

We have developed an analytical solution of a very
general class of eigenequation. The examples of
solution illustrate the precision of the method compared
with finite-difference techniques.

The convergence process normally leads to the
fundamental eigenparameters; however, it is hoped that
it can be extended in a straightforward manner to give
also the harmonics. The significance of the solution for
those equations which have no real eigensolution, in
which case the convergence is of a rather different
nature, is also being investigated.
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