Current approaches to classification and clump-finding at
the Cambridge Language Research Unit

By Karen Sparck Jones and David Jackson*

Computer programs for automatic classification are a desideratum in many fields. Work on
suitable procedures for handling large bodies of object/property descriptions has been in progress
at the Cambridge Language Research Unit for some years: this paper describes the current series
of general-purpose programs which have been developed there, in which classes or ‘‘clumps’’ of
objects are obtained, using a similarity matrix, by a simple iterative scan of the universe of objects,
distributing them in such a way that an appropriate cohesion function is minimized. This actual
clump-finding process is embedded in an overall package in which the information given by a

classification is manipulated in a variety of ways.

The current applications of the programs,

especially for information retrieval, are described.

Work on the use of computers for classification and
grouping has been in progress at the Cambridge Language
Research Unit for some time, under the general heading
of the theory of clumps. This has been chiefly con-
cerned with the use of automatic classification pro-
cedures in information retrieval, but other applications,
especially to linguistic material have also been examined;
and one objective of the research has indeed been to
develop general-purpose classification algorithms, on
the grounds that these will tend to give more reliable
results even if one is only interested in a particular
application. The first series of experiments on these
lines were carried out by R. M. Needham between 1958
and 1962. These have been fully reported on elsewhere
(Ref. 1-4) and the present paper is concerned with the
recent developments of this work by the authors, with
R. M. Needham as consultant, which are associated with
a project for a quite large experiment in the use of
automatic classification techniques in information re-
trieval, and with the advent of a new and more powerful
computer in the Cambridge University Mathematical
Laboratory.

Most automatic classification procedures have two
stages: in the first the input object/property information
is processed to form a similarity matrix in which the
extent to which all the pairs of objects are related by
their common properties is noted; in the second this
matrix is manipulated in the search for groups of objects
which share common properties. Procedures of this
general kind may, however, vary very much in flexibility
and in the degree to which they may readily be extended
to large data samples, though both flexibility and
extensibility are highly desirable, given the current state
of research in this field. Our intention in designing the
present set of clump-finding programs has been to make
it as easy as possible to use different similarity coefficients,
and more importantly, different class definitions, while
the actual search procedure for finding the classes
remains quite simple. The latter is made possible by

the use of the notion of cohesion: the boundary between
a clump and the remainder of the universe of objects
represents a local minimum of the cohesion between
objects as defined by their similarity connections, and
the particular cohesion function which is used will thus
characterize the way in which a clump is separated from
its complement. The important point is that a wide
range of cohesion functions may be combined with a
very simple method of clump-finding in which the
universe of objects is scanned to see whether shifting an
object from one side to the other of a partition which
separates a potential clump from its complement will
reduce the current value of the particular function in
question. The time taken to find classes is a critical
aspect of any classification program, especially for large
quantities of material. Realistic samples of linguistic
data tend to be large, and we are primarily interested in
classification algorithms which are viable in this context.
Again, the nature of our empirical material has been
such that we have always considered it essential that any
class definition which is used is such that it will not be
upset by errors in the data. The general approach to
classification on which the programs described below
are based is therefore one whose object is to find classes
which are not necessarily exclusive, and which do not
depend on the existence of properties which are shared
by all their members, in large bodies of untidy empirical
material, and in a reasonably finite time.

Given that the real object of mechanized classification
research is to provide viable procedures for dealing with
the quantities of data for which hand-classification on a
sophisticated basis is unthinkable, or at least highly
tedious, it follows that any serious programs must be
capable of handling some thousands, and not merely
some hundreds, of objects and properties, though the
number of object/property descriptions which can
actually be managed will naturally vary, since the critical
factor is the density of the similarity matrix, and the
number of non-zero entries in the matrix is determined
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by the extent to which properties are shared by the
objects, rather than by the simple numbers of objects
and properties that there are. The present clump-
finding algorithms require repeated scans of the matrix,
and a realistic view of the amount of computer time
which can justifiably be spent on looking for clumps in
a given body of material implies that the entire similarity
matrix must be held in rapid-access store, though it is
in principle possible to use back-up store during the
search. The present Cambridge University computer,
Titan, has 64,000 words of core store, and it is this
together with its greater speed, that has enabled us to
embark on a wholly new series of programs and experi-
ments, with much larger quantities of data.

In writing these programs, we have concentrated on
the development of what may be called a general-
purpose clump-finding engine, which may hopefully be
applied to any body of material in a reasonably suitable
form, in a variety of ways depending on the selection of
different subroutines and according to the specifications
represented by a particular choice of options, for
example for different similarity definitions. The pro-
grams themselves are written in Titan assembly code,
chiefly because no suitable higher-level language was
available at the time when the project began. This
unfortunately means that they cannot usefully be
circulated, but we hope that we will be able to carry out
experiments here with outside data, provided that this
is in an appropriate form. We have in any case found
that the use of machine code makes for much faster
central loops in the programs, and since the speed with
which clumps are found depends to a great extent on
these loops, there have been some advantages in the use
of the machine code.

The programs

The programs themselves fall into three main groups:
one, under the general heading RAS, prepares the data
for clump-finding by listing the co-occurrences or
associations between all the pairs of objects which have
any property in common, and then computing the
similarity matrix from this information; the second, Cl,
carries out the actual search for the clumps, and the
third, PCl, processes the resulting object-property-
clump information from a variety of points of view: this
is desirable both in itself as a means of exhibiting all the
characteristics of the classification which has been
obtained, and as a means of setting up the environment
for any application of the clumps, say for information
retrieval.

The input data for RAS is presented as a series of
property numbers, each followed by a list of the object
numbers possessing the property, with a terminal
marker. See Fig. 1(a) for an example. (Our illustra-
tions all refer to the same body of data, but showing
how it is processed as a whole would take too much
space, and the figures therefore represent selections only,
though some continuity is maintained throughout the
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series.) Some kinds of data not in the standard form
can, however, be accepted by an alternative read routine
and converted to standard form, and any data can be
inverted so that the objects are treated as properties and
vice versa: in the classification procedure no a priori
assumptions are made about the nature of the one as
opposed to the other, and in some applications it may
be of interest to attempt a classification of both the
initial objects and the initial properties. These property-
object lists are then processed so that every object which
shares some property with each given object, and so can
be said to co-occur with it, is noted, together with the
frequency with which they co-occur, which depends on
the number of properties they share. For each object,
that is, we have a list of all the objects with which it is
associated by the possession of a common property, so
that the set of lists for all the objects in our universe
gives all the associations among the different objects.
This information is held in chained list form, and is
obtained by scanning the object list for each property,
picking up each pair of objects which occurs in it, and
either inserting the co-occurrence as a new item in the
list of objects associated with each member of the pair,
or incrementing the count for a co-occurrence which has
already been listed. The use of chained lists means that
this stage of the processing consumes a large amount
of store, and provision is indeed made for its exceeding
the rapid-access store of the machine. The speed of the
central loop is also fairly critical, though the fact that
this information need in principle be computed only
once for any given experimental material means that it
is not vital. In the largest experiment to date these
chained associations consumed all the available core
store of the Titan, namely 50,000 words, with one
co-occurrence and one address per word, and took about
three minutes to compute. The similarity coefficients
currently in use require the number of occurrences of
each object, and a count of the occurrences for each
object is also accumulated in the base vector for the
chains. If a weighted similarity coefficient is to be used,
in which the similarity between two objects is determined
not only by the numbers of properties they possess, but
by the frequency with which these properties occur, the
reciprocal of the frequency of each property is formed
as its object list is read, and the associations are then
incremented by the reciprocal of the property concerned
for each co-occurrence. The choice of the weighted or
the unweighted form of association is made by parameter
setting on entry to the program, and a further choice as
to whether the associations are to be printed or not is
available. With very large bodies of data there is little
point in printing all the associations, and so a limited
printing for information is possible if required. For the
output from these routines the chains are unpicked and
the associations stored serially, with an object marker
and co-occurrence count per half-word, either in core
store for immediate use in computing the similarity
matrix, or on magnetic tape.

The value of the similarity coefficient for a pair of
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(a) Example of input data in normal format: each property number is followed by the
numbers of the objects possessing the property.

.12 3/

6 10 11 23 24 25 26 /
579 12 13 14 15 16 28
18 22 /

1/

“whwN

etc.

/

(b) Example of co-occurrence lists: each object number has the number of properties
possessed by the object given with it, and is followed by number pairs representing
objects which share at least one property with the given object, and the actual counts

of shared properties.

11 21 31
21 11 31
31 11 31
42 61 §2 101 111
231 241 251 262 272
52 61 72 81 92
162 171 211 231 241
etc.

17 2

10 1

182 192 202 212 222

11T 122 132 142 152

251 261 271 282

(c¢) Example of similarity matrix: each object number is followed by number pairs
representing objects which gave a non-zero similarity to the given object, and the
actualjvalues of the similarity coefficients, x 100.

1 2 100 3 100

2 1 100 3 100

3 1 100 2 100

4 6 025 8 067 10 025 11
21 050 22 067 23 050 24 03

5 6 025 7 067 8 067 9
14 067 15100 16 100 17 02
26 017 27 020 28 100

etc.

objects will be some function of the properties they
share, the properties they individually possess, and the
total numbers of objects and properties and their fre-
quencies of occurrence. Various possible similarity
coefficients have been studied, but two simple ones only
have been programmed so far, namely Tanimoto’s in
which the similarity of two objects is defined by the
ratio between the number of properties they share and
the number of different properties they possess alto-
gether, and a weighted version of this coefficient in
which each occurrence of a property is replaced by its
reciprocal. The latter was adopted in the earlier experi-
ments after it became apparent that the classes which
were found in some cases were perverted by the large
range in the frequency of occurrence of the properties
concerned, and we have found that it is in general more
satisfactory. We have confined ourselves to com-
paratively simple coefficients partly because it is desir-
able that the time required to compute their values should
be kept to a minimum, but also because we feel that
effort is more appropriately spent on the actual classi-
fication process, which is ill-understood, than on
the similarity calculations, which are relatively well-
understood.

020 17 067 18 067 19 100 20 100
3 25020 26 040 27 050

100 10025 11 020 12 100 13 067
5 21020 23020 24025 25020
Fig. 1
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In the current similarity matrix programs the com-
putation of the values of the similarity coefficient for
each pair of objects is by the same process whether or
not the associations are weighted: but as it might be
necessary to incorporate other quite different definitions,
the program has been written in subroutine form, so
that alternative procedures can be plugged in quite
easily. This approach has indeed been adopted
throughout, to facilitate changes and improvements and
to make it easy to build up an engine in which as many
alternatives as are desirable at various points can be
provided. The matrix, or rather all its non-zero cells,
is stored serially, like the associations, with one item,
consisting of an object number and similarity coefficient,
per half-word. The size of the half-words, namely
24 bits, does not allow much scope, and some juggling
of the bits is needed either if the object numbers are
large, or if the similarities or the distinctions between
them are very small. Again, optional printing is avail-
able, and the matrix may either be stored for future use
or handed over directly to the clump-finding program.
As noted earlier, the size of the matrix is the major
limiting factor on the clump-finding procedure: currently
matrices of up to 40,000-word size can be accommodated,
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representing 80,000 similarities. Our experience so far
suggests that a matrix density of about 109/ is to be
expected with the kind of material with which we are
working; in general the density decreases with the
increase in absolute size, but some variation is pre-
dictable. The largest matrix so far studied contained
about 48,000 non-zero elements out of a possible total
of about 400,000, and took about one minute to
compute.

Cohesion

Quite apart from questions of scale, the current clump-
ing programs, as noted earlier, are distinguished from
the previous ones by the consistent use of the notion of
cohesion. This is, however, a natural development of
the original approach: the GR-clump definition of the
earlier program series can in fact be reformulated in
terms of the arithmetic cohesion between a clump and
its complement, and this reformulation can be regarded
as the starting point for the present development of our
approach to classification. If SPQ represents the sum
of all the similarities between all the members of P and
all the members of Q, and 4 and B are two classes which
partition our universe of objects (where we conven-
tionally regard 4 as the potential clump and B as its
complement), then the arithmetic cohesion function is

SAB )
SAA 4 SBB

Classes on this definition are unfortunately difficult to
find unless an elaborate procedure is used for recon-
stituting the partition between a potential clump and
its complement when this has “‘collapsed’ in the attempt
to obtain an acceptable distribution of the objects, and
a natural development is the adoption of the geometric
cohesion function

SAB2
SAA x SBB

This step was taken in the earlier work on the theory
of clumps, and this version of the cohesion function was
used as the basis for our present program system. Its
merit is that the actual procedure for finding clumps on
this definition is quite simple, since it consists only of
an iterative scan of the object vector to see whether
shifting an object from one side to the other of the
partition between the potential clump and its com-
plement will reduce the current value of the function;
the partition cannot, however, collapse, so that the
search for a clump must terminate in a stable partition
specifying the division between some clump and its
complement. (In practice, to save computer time, if a
clump is not found reasonably soon, the repeated in-
spection of the vector can be terminated after a suitable
number of attempts at minimization.)

The geometric cohesion function depends on a com-
paratively small number of terms, namely the set simi-
larities within the two sets of objects concerned, and
between them. It might, however, be reasonable to take
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other pieces of information about the universe of
objects into account, and in particular the number of
objects in each set. In evaluating a possible clump, we
can look at it from two points of view, according to
whether we are concerned with what may be described
as its internal and its external characters, respectively:
in the first case we are concerned with its “coherence”,
that is with the extent to which the members are con-
nected with one another; and in the second, we are
concerned with its “separateness”, or the extent to
which it is marked off from the remaining objects.
Different cohesion functions vary in the way in which
they emphasize one or the other of these, and though
one function rather than another may give better results
for some particular body of data, we wish in general to
find a function which holds a balance between the two
factors, provided always that it is compatible with a
simple and rapid search procedure. The defect of the
geometric cohesion function is that it tends to place too
much weight on the separateness of a clump, rather than
on its internal coherence, and it became apparent in our
experiments that the classes which were found on this
basis were not wholly satisfactory, at least for the
purposes for which they were required. We have
accordingly made provision for an alternative definition,
in which the number of elements in the clump is taken
into account, as follows:

SAB N NA2 — NA*
SAA SAA

This function has given more acceptable clumps in the
cases where it has been tried, but further work on it and
also on other functions, is required: the important point
about this function as opposed to the previous ones is
that the two components of it representing separateness
and coherence, respectively, are clearly distinguished
and so can be manipulated independently. We have
therefore designed our clump-finding program so that
all the information about the distribution of the objects
in the universe, and their similarity connections, is
compiled and is available to the program, so that any
function can be computed which is thought to be
appropriate: in the current version of the program there
are subroutines for computing either of the two functions
just mentioned, so that the one which is required is
simply obtained by the setting of an optional parameter;
and the structure of the program is such that the routines
for others could be plugged in without difficulty. The
only limitation at present is that the iterative search
procedure described above should be used, since it is the
time taken to inspect and adjust the partition which
determines the speed of the whole program.

The other point at which some choice is possible is in
the starting position for each search. The simplest
approach is to take a single element as the potential
clump and to attempt to grow a clump round it, or at

* The value of the function has to be scaled up for storage and

some experimentation may be required to find the correct scale
factor for a given body of data.
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least from it, whether or not it is deliberately retained in
the clump throughout. This has some practical dis-
advantages, and is, of course, impossible if the total
number of elements in the universe is very large; but it
is very convenient for experimental programs, and has
in fact been adopted for our current tests.* One obvious
modification, moreover, for large bodies of data is to
take only those elements which have not so far appeared
ina clump. Alternatives are to set up random partitions,
or to take classes found by some other methods as
“seeds”, or to take, say, pairs or triples of highly con-
nected elements as starting groups. We would like to
try some of these, and it would not be difficult to make
the necessary additions to the programs.

Clump-finding

The actual clump-finding program C1 itself is written
in subroutine form with a controlling main program. It
initially sets up an address vector to the similarity matrix,
and then enters a series of cycles, where each cycle
represents an attempt to find a clump from some given
starting position. The set similarities and element
counts are kept, together with the current value of the
cohesion function, in a vector: the new values of each
of these items which would be given if an element were
shifted from one side of the partition to the other are
formed in a second vector, and if the value of the
cohesion function would be reduced if the element was
shifted, this second vector is copied over the first, to
become the new version of the vector; otherwise, the
current version is left unchanged. The computation of
the items in this “set similarity vector” depends on
information about the set membership of each element
in the universe, and the total of its similarities to the
two sets of objects defined by the current partition.
This “total similarity vector” is set up at the beginning
of each cycle with the starting element in the potential
clump and the remaining elements in its complement,
and the clump-finding process then consists of a scan
down this vector and an examination of each element in
turn to see whether changing its set membership will
improve the value of the cohesion function. If a change
is desirable, the note of the set membership of the object
is altered, and the values of the total similarities to A
and B of the object are also altered. This is effected by
scanning the matrix row for the object and adding or
subtracting its similarity to the other objects listed in
the row to or from the two totals, according to the set
membership of these objects; the total similarities for
the latter are also changed by the value of their
similarities with the given object, according to the
change which has been made in the set membership of
the object. A single scan down the object vector con-
stitutes one iteration in the search for a clump; if no
changes in the set membership of the object have been

* If single elements are used, the initial value of the cohesion
function is set high, so that the element itself is not taken as a
clump, rout court.
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made during the scan, it is assumed that a clump has
been found: otherwise the scan is repeated. The search
procedure is thus an order-dependent one, but this is
difficult to avoid if the process is to be fairly rapid. The
clumps which have been found can either be printed out
(see Fig. 2(a)), or produced on paper tape or filed on
magnetic tape for re-input to the processing program
PCl. In each case they are accompanied by a note of
their starting element, and by some diagnostic informa-
tion consisting of the number of iterations required to
find the clump, the final values of the terms in the
cohesion function and of the function itself, and the
number of elements in the clump (Fig. 2(b)). Facilities
are also available for printing the total similarity vector.
The speed with which the program works is essentially
determined by the speed with which a change in the
value of the cohesion function can be computed and
tested, and the consequent changes can be made to the
items in the total similarity vector. It is difficult to give
reliable figures, but in the largest experiment to date
with a similarity matrix with nearly 50,000 non-zero cells
representing 641 objects and 2,443 properties, clumps
were found at the rate of one a second. As noted
earlier, the limiting factor on the store size is the matrix;
otherwise this program, like the preceding RAS pro-
gram, essentially requires only enough space for vectors
as long as the number of objects or properties. The
clump-finding program requires only the object vector;
the associations and matrix programs depend on an
object vector only if the similarities are unweighted, but
on a property vector as well if weighted similarities are
used. These vectors will not normally be very long,
though in one application on which work is now in
progress, it is estimated that there will be about 14,000
properties.

The output from the classification program consists
of a list of all the clumps found, and this may in fact
include a large number of duplicates, since the same
clump can be found from different starting points. On
the purely clerical level, therefore, a purging routine is
required. The processing program PC1 does, however,
do far more than this: the information given by a
classification of objects in terms of their properties can
be looked at from a number of different points of view:
the clump-finding program provides a list of the objects
contained in each class, but we may also like to know,
given that we are dealing with non-exclusive classes,
what the clump list for each object is, and what the set
of properties characterizing each class is. This is
desirable not only during the development of the classi-
fication procedure, when we may wish to trace the
history of each of the clumps we have obtained, but also
as an aid to the evaluation and study of the classes we
have found with an established program. In the first
case, such information, when combined with the diag-
nostic information supplied by the clumping program,
the note of the starting element and so on, can be most
useful. In the second case this kind of information can
assist us, for instance, if we try to determine whether
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(a) Example of the clump list: each starting element, in parentheses, is followed by the
numbers of the objects forming the clump found in the search from the given element.

Note the repetitions of the same clump.

(1) 1 2 3

(2) 1 2 3

(3) 1 2 3

(4) 4 6 8 10 11
24 25 26 27

(s) 5 7 9 12 13

(6) 4 8 10 11
24 25 26 27

(7) 5 7 9 12 13

(8) 4 8 17 18 19

(9) 5 7 9 12 13

(10) 4 6 8 10 11

24 25 26 27
etc.

17

14
17

14
20
14
17

18 19 20 21 22 23
15 16 28

18 19 20 21 22 23
15 16 28

21 22 26 27

15 16 28

18 19 20 21 22 23

(b) Example of the diagnostic information about the clumps: for each clump, which is
represented by its starting element, this consists of the number of iterations required
to obtain the clump, the values of the components of the cohesion function, namely
SAA, SAB, SBB, NA and NB, and the actual value of the function, G, itself.

1 3 6 0 220
2 3 6 0 220
3 3 6 0 220
4 4 120 19-4 66
5 4 595 19-4 127
6 4 120 19-4 66
7 3 59-5 19-4 127
8 4 55-8 29 117
9 3 595 19-4 127
10 4 120 19-4 66
etc.

3 25 0
3 25 0
3 25 0
16 12 47
9 19 49
16 12 47
9 19 49
10 18 135
9 19 49
16 12 47

Fig. 2.—Example of output from the clump-finding program

there are any defining properties for a class so that when
we come to apply our classification we can assign new
objects to our existing classes. This information is also
required if we wish to use the classes we have found as
they stand for some purpose, so that the output from the
classification program constitutes the input to a further
program: if we are concerned with information retrieval,
for example, and have classes of keywords or terms based
on the co-occurrences of the terms in document des-
criptions, we need to obtain the list of all the classes in
which the terms for a document occur, that is, to set up
the class list for each of our initial properties. Our
primary application in the present project is indeed
information retrieval, and PCIl is therefore directed as
much to setting up the environment for the retrieval
process as to organizing the output of the classification
procedure.

Processing the clumps

PCl, like RAS and Cl, is written as subroutines, with
entry from a controlling main program. The input to
it is the output from the clump-finding program, con-
sisting of the list of clumps found, their associated
diagnostic information and the notes of their starting
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elements, together with the original object-property
array from which the similarity matrix was formed. Its
function, as just noted, is firstly to collate and analyse
all this material, so that it can be used in further programs
in which the classification is to be applied, and secondly
to output, through either the printer or the punch, some
or all of this information as required. In the initial
operation of the program any duplicate clumps are
removed, and the remainder are renamed, thus giving a
list of all the different clumps which have been found.
The program then assembles the different kinds of
information which are to be available; these are currently:

(1) the list of new clump names, with their lists of
objects and associated diagnostic specifications;

(2) the list of objects, with their lists of clumps, that
is all the clumps to which they belong;

(3) the list of properties, with their lists of objects,
that is the objects which possess them;

(4) the list of properties, with their lists of clumps,
that is the clumps for each of their objects,
together with the frequencies of the clumps;

(5) the list of new names for the clumps, with their
old names.
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(The list of objects, with their lists of properties, that is
the inverted form of the input data which appears as (3),
can be obtained, but is not set up automatically in the
present program since this is chiefly intended in our
current experiments as a means of setting up the environ-
ment for information retrieval, and this information is
not required for this purpose.)

Each of the types of information set up in PCl is held
in a standard ‘“‘accession vector-matrix’” form, that is,
with each body of information in the form of a matrix,
to which accession is obtained by a vector; the items in
each body consist in turn of a name, followed by a
defining string, where the names and the members of the
string are numerical, with a terminator. The items are
stored contiguously, and the accession vector is there-
fore an address table for reaching each item. This data
structure is convenient since the use of the vectors
considerably reduces the amount of time taken to obtain
a particular piece of information without grossly
increasing the amount of store which is required for the
information as a whole; and using the information
simply consists of manipulations of the matrices, via their
vectors. The length of the vectors, of course, varies with
different bodies of data, and their distribution in the
store has therefore to be set initially: but this is not
difficult since the length of each is given either by the
input data or by preceding programs. The matrices are,
however, concatenated automatically, to save space,
since their size could otherwise only be estimated
roughly; taken together, they form an area of the store
called the dictionary, and the program can be regarded
as performing a variety of operations on the different
sections of this dictionary: the individual subroutines
either convert incoming information to the standard
form, or derive new types of information from existing
ones. The program will print any or all of the different
kinds of information according to the selection of a
suitable option: in addition a “‘distribution print” of the
clumps is available in which the elements of each clump
are exhibited in tabular form, with the same element in
corresponding positions for its different clumps. This is
extremely useful, since it brings out the comparative
membership of the clumps very clearly, and this makes
it easy to inspect and evaluate the results of any par-
ticular attempt to find clumps. For some examples of
the program output see Fig. 3(a)—(e).

The three programs which together constitute the
clumps engine are combined as a package on magnetic
tape, with provision for different modes of use such as
entry at different points, processing in several stages or
in one run, input and output from paper tape or magnetic
tape, and so on. Many of the alternatives are selected
by an initial setting of a controlling parameter array,
which is also used for the relevant specifications of the
input data, starting elements, and other items of this
kind. In general, the programs have been designed to
be as flexible as possible, to accommodate the different
features of the different bodies of data to which they may
be applied, and to form an integrated whole which can

35

be used to classify a given set of objects and to analyse
the resulting classification, with the minimum amount of
thought about the details of the process and the transition
from one stage to another.

Application

Experimentally, the chief object of our project is to
apply these classification procedures to some information
retrieval material from Mr. C. W. Cleverdon’s ASLIB-
Cranfield project. We have, however, tried them out
on other kinds of data, partly because these applications
are of interest in their own right, and partly because our
aim is to develop a general-purpose program, and
testing on a variety of kinds of data is necessary to show
that this has been achieved. These tests are still mainly
in progress, and we cannot therefore draw any firm
conclusions about the validity of our approach from
them, though the results as a whole are promising. They
will not be described in detail, but the character of the
data may be noted to give some idea of the range of
application of our procedure. We have, for instance,
worked with some theorems of Euclid, characterized by
their vocabulary, Russian nouns described by the words
they co-occur with in specific syntactic constructions in
running text, documents indexed by keyword lists, soil
samples specified by fossil content, and offices charac-
terized by their patterns of contact with others in terms
of people’s journeys between them. In some cases the
classes obtained have not been very satisfactory. This
has, however, suggested a more critical inspection of
the original data, which has often turned out to be
ill-conditioned in some unnoticed way: it is difficult to
find clumps if a substantial proportion of the properties
characterize a large number of objects, for example.
This point is an important one. One cannot expect even
a flexible general-purpose classification program to give
good results with bad data, or even good results first
time with good data, unless any major characteristics
of the data which will influence the classification have
been allowed for (say by weighted similarities). These
characteristics are often not very obvious, and the main
function of the first runs of the program is usually to
bring them out: this may suggest either a choice of
different options in the program, or a revision of one’s
expectations about the kind of class which will be found,
or even a change in the data itself. In this connection
it must indeed be emphasized that the evaluation of the
results of large classification experiments is a major
problem: just looking at the classes is liable to be very
inefficient, and conclusions based on intuitive evaluation
may not be reliable indications of the performance of a
classification which is specifically intended for some
purpose. At the same time, testing a classification by
applying it may be a complicated and expensive way of
proving early test results.

As noted earlier, the primary purpose of our project
has been to study the effectiveness of clump-finding
techniques in automatically classifying data derived from
the Cranfield project, where a collection of 1,400 aero-

202 Iudy 61 uo 1senb Aq £16G.€/62/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d



Classification

(a) Example of the purged clump list: each clump number is followed by the numbers of the

objects forming the clump.

1 1 2 3

2 4 6 6 10 11 17
25 26 27

3 5 7 9 12 13 14

4 4 8 17 18 19 20

5 4 18 19 20 22

18 19 20 21 22 23 24

15 16 28
21 22 26 27

(b) Example of the purged clump list diagnostic information: this difters slightly from that
given in Fig. 2(b), as it consists of SA4, SAB, SBB, NA, NB, G, and the old and new names

of the purged clumps.

6 0 220 3 25
120 19-4 66 16 12
59-5 19-4 127 9 19
55-8 29 117 10 18
15-9 17-7 174 5 23

0 1 1
47 4 2
49 5 3

135 8 4
113 18 5

(¢) Example of the clump-object list: each object number is followed by the numbers of the

clumps in which it appears.

1 1
2 1
3 1
4 2 4 5
5 3
etc.

(d) Example of the property-clump list: each property number is followed by number pairs
representing the numbers of objects possessing the property which occur in a particular

clump, and the actual clumps.

1 31
2 7 2
3 9 3
4 2 2 2 4 25
5 1 2
etc.

(e) Example of the clump distribution print: each clump number, in parentheses, is followed
by the numbers of the objects occurring in the clump, in tabulated positions to facilitate

comparisons.

1) 1 2 3/
@ 4
3 5
@ 4
&) 4
etc.

Fig. 3.—Example of output from the clump-processing program

nautical documents has been exhaustively indexed by
experts and associated with a set of test requests for
retrieving specified documents. The fact that the
document descriptions have been independently supplied
by experts, and that test requests exist, is a great
advantage since it constitutes a genuine test of our
techniques, and indeed was the reason why we chose
this material; a further point is that several other people,
including Cleverdon and Professor Salton of Cornell,
are working on it, so that a comparison of results is
possible. The nature of the collection has been fully
described by Cleverdon et al. (1966), and so will not
be discussed here. It is sufficient to note that each
description consists of a set of “themes” defining the
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main topics of the document, where each theme in turn
consists of a set of “concepts” represented by groups of
associated keywords. The themes and concepts are
individual to documents, while the keywords are com-
mon to the collection as a whole. Previous work on
retrieval at the C.L.R.U. has always been concerned
with grouping keywords on the basis of their occurrences
in document descriptions, so that the documents are
indirectly classified by the classes of keywords in which
their words occur, and this approach is being adopted
here. The fact that the descriptions have levels, however,
means that we can choose whether we use co-occurrences
of words within concepts, within themes, or within
documents; and we have in fact adopted the second of
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these alternatives as producing co-occurrences which are
both discriminating and informative. This is subject to
a slight modification: the keyword vocabulary is
absolutely uncontrolled in the sense that variants of the
same word, like singular and plural forms, may occur;
and we have conflated these to form “terms”. Classi-
fication and retrieval are therefore being carried out with
themes and terms, each theme being taken as a repre-
sentative of its document.

It is estimated that the object/property array for the
complete collection will be very large, in the region of
2,000 objects and 14,000 properties; and we have there-
fore carried out our first experiments with a selected
subset of 200 documents, which has given rise to 641
terms (objects) and 2,443 properties (themes). There are
about 48,000 non-zero entries in the similarity matrix
for this sample, out of a possible total of about 400,000,
representing a predicted density of around 10%,. This
is half of the maximum size possible with our 64 K core
store, since each item takes one half-word, and the
preceding associations of course consumed the entire
store. We have so far tried only unweighted similarities,
and have found clumps, from every starting element in
turn, with both definitions 2 and 3. The average time
for each search was 1-5 sec. A very superficial inspection
of the clumps shows that they are not implausible in
either case, but just looking at word classes intended for
retrieval is not a good method of evaluating them, since
a class with no obvious semantic rationale may never-
theless be effective in retrieval. The classes given by
definition 3 are generally bigger, but it is not clear what
this implies for retrieval either, since it is as difficult to
infer how a classification as a whole will work as it is to
predict the effect of individual classes.

Results

Experimental retrieval has in fact only recently been
commenced. Given that our interest is in the effective-
ness of clumps, rather than in the mechanics of retrieval,
it turns out that we can obtain enough information about
the behaviour of our classes with a quite simple pro-
cedure; and our program is therefore an elementary one
in which the term and clump specifications of a request,
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Though none of these experiments has been carried
very far, we feel that in general the results which have
been obtained are satisfactory. The important point is
that our programs have now been developed to a stage
where a quite large number of alternatives can be tried
in classifying any given body of data, and where any
particular experiment can be performed largely by
pressing the desired combination of buttons, so to speak.
The number of variables entering into the system as a
whole is quite large, and we are very anxious to study
their general effects on automatic classification of the
type we have described in a consistent way. There is a
great need for an efficient machine for rapid and
exhaustive testing of this kind of approach to automatic
classification, and one of our main objectives in designing
our programs has been to meet this need as far as we
can. We hope, therefore, that we will be able to carry
out sufficient experiments in the future to draw some
conclusions about the factors which enter into a pro-
cedure of this sort, and more importantly, to show that
this approach to automatic classification is a viable one
for more than restricted experimental situations.
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