The crystallographers’ friend

By Judith C. Matthewman*

The system of programs which is described has been developed in order to provide a ‘‘computing
service within the computing service’’ on the Titan computer at Cambridge University. The
arithmetic involved is for a particular department with special problems, but it is hoped that the
discussion of the needs of such a system and the ideas developed for meeting these needs will be
of general interest to other programmers with the task of writing a related set of standard programs.

1. Introduction

Amongst the many scientific applications of computers,
crystallography has a special place. There is a vast
amount of work which can be helped by a computer,
and much of present-day crystallography could not be
done without one. Most of the computation involved
is routine, in the sense that a set of sufficiently general
programs should be able to handle data from any crystal
being studied.

In the past, it has been unusual for all the necessary
standard programs to be written by the same person, or
even by several people with a view to making them com-
patible. This ad hoc approach has usually resulted from
lack of time or planning. Programs have often been
written by research students who are working on parti-
cular problems, rather than writing for a generally useful
co-ordinated library.

With the advent at Cambridge of a new large and fast
computer, the Titan, it became essential to write a com-
pletely new set of crystallographic programs, and an
attempt has been made to create a unified system capable
of doing all the routine calculations required by a
crystallographer. It is evidently desirable that the
crystallographer (who will hereafter be called the wuser)
should be able to state his requirements in a language
which resembles his own as closely as possible, in much
the same way as a programmer wishes to write his
program in a language allied to the problem he is trying
to solve. The prime consideration throughout the
system of programs is ease of use. The invention of a
completely new ‘“Autocode” language was thought to
be too ambitious, and a very simple language has been
developed. The system was named the ‘“Crystallo-
graphers’ Friend” at an early stage in its development,
and this was rapidly abbreviated to “Friend”.

This paper describes the needs of such a system, and
an attempt to provide for them. A large part of the
programming involved deals with the arithmetic, and
various numerical techniques for tackling it, but we are
not concerned with that part here. The paper is not
directed towards crystallographers, and, indeed, cry-
stallography will be avoided wherever possible. It is
hoped that the ideas of the system will be applicable to
other fields with similar requirements.

2. Requirements of the system

The requirements of a large system of programs
written for others to use are:

(a) To shield the users from the need to understand
any technical details of the computer or of the pro-
grams. Users are assumed to know nothing about pro-
gramming. It is desirable that they should regard the
computer as a tool, which must be used with care and
forethought, but whose inner workings they need not
understand. They must understand in some detail
what the programs do, without knowing how they do it.

(b) To enable the users to carry out all accepted
standard calculations easily, quickly and without error.
The system must be easy to grasp and use, and the
instructions for its use should be expressible concisely
and clearly. The system should cater for visitors from
other laboratories, and indeed other countries, who
have been used to their own computing facilities. Such
users may be in the process of refining the structure of a
crystal, and wish to continue using Titan with a minimum
of effort.

(¢) To enable the users to provide unchanging data
once only, and to remember their data for as long as
necessary. This is particularly relevant to crystallo-
graphy, in which the determination and refinement of a
crystal structure may take months or even years, and
much of the data for a particular computer run are
identical with data for the previous run. Users would
like to supply only those items of data which they are
changing from the previous run. They would also like
to be able to obey several programs in sequence in one
run.

(d) To detect and explain to the users all their obvious
errors.

(e) To release the system for use complete in itself,
but open-ended. It should be possible to add new ideas
and techniques, when necessary, with a minimum of
disturbance.

(f) To leave the system so that it can be understood
and maintained by other programmers: too many large
programs develop inexplicable faults when their authors
have moved elsewhere. It is also an advantage if pro-
grams have been written in such a transparent way that

* Crystallographic Laboratory, Cavendish Laboratory, Free School Lane, Cambridge, and University Mathematical Laboratory,

Corn Exchange Street, Cambridge.

20z 1Mdy 61 uo }sanb Aq 8Z65.€/8€/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Crystallographers’ friend

if an error is observed it can easily be corrected, or if
some new numerical method is developed it can be
added to the system.

3. Programming language used for the system

In view of (e) and (f) above, the ideal would have
been to program in some powerful symbolic language.
It was a matter of urgency to provide a set of programs
for Titan very quickly, and such a language would have
made this possible. The resulting inefficiencies in com-
piled programs could probably have been removed
gradually by the judicious insertion of sections of
machine-code program. Much of the preliminary work
was written in CPL (Barron et al., 1963), but it soon
became apparent that a CPL compiler would not be
available on Titan in time. It is, however, still envisaged
that the completed system might be translated (by hand)
back into CPL if only for documentation purposes.

If the system had been written in FORTRAN, it
could have been transferred to other computers with
FORTRAN compilers, with evident advantages. Indeed
many of the arithmetic routines involved have existed
for several years in FORTRAN, and some of these
could probably have been adapted to fit the system.
Unfortunately, at the time of writing, Titan can only
be programmed in an Autocode (which is not a suffi-
ciently powerful language for this type of programming)
or its machine code, IIT (“Intermediate Input for
Titan”). Although this machine code is admirably
suited to the detailed logical work involved, it makes it
impossible to publish any of the program itself. A dis-
advantage of the present system written in IIT is that
it cannot be run on any other computer (including no
doubt any machine which may eventually replace Titan).

4. Conventional method of presentation of data

Crystallographic data for a computer program is of
two categories. The numbers which the user measures,
either by eye from a photograph or automatically using
a counting device, are his “observations”. They are
simply a set of numbers indexed over a three-dimensional
array, and the only problem they are likely to present
is one of quantity. Provided that the computer has
sufficient storage to accommodate these observations
they can be handled; in the present set of programs they
are held on magnetic tape.

All the other data for a crystal consists of isolated,
unrelated numbers, and has in the past been grouped
together on to a single data document called, for his-
torical reasons, a ““preface”. It includes such unchanging
items as the type of apparatus used to measure the
observations, the symmetry possessed by the crystal,
its overall dimensions, and the dimensions of the tiny
unit cell whose repeated presence causes the diffraction
of X-rays. It also includes more transitory data such as
suggested positions of atoms within the unit cell, or
how many cycles of refinement are required.

D

39

Comments
a, b and c, the lengths of unit cell sides
Alpha, beta and gamma, the angles
between them

1:23 2-34 3-45
9 90 90

Maximum bond to be printed
Maximum bond for which angles
between bonds are to be printed

No. of symmetry operators to be given
No. of atomic positions to be given
No. of these positions to be considered
as source atoms

LWWN Ob

(x, y,2)
12 +x,1/2 4y, 2) Symmetry operators defining space

group of crystal

Osmium 0-25 0 0-26 List of labels and x, y and z co-ordinates
Oxygenl 0-35 0 0 of the three atoms
Oxygen2 0 0-85 0-25

Fig. 1.—A conventional preface

In a typical run using an old-style standard program,
two data documents would be provided for input: an
“observations” document that is unlikely to change
from run to run, and a “preface” which is given in a
format demanded by the program, and which contains
data of the kinds described above. For any particular
program the order in which items of data occur on the
preface is not obvious; it is laid down in the specification
of the program, and must, of course, be followed exactly
by the user.

Confusion frequently arises in the use of conventional
programs. Experience indicates that it is difficult to
use a program which has several options requiring the
presence or absence of particular items of data. Users
tend to assume knowledge of the correct ordering of
items without consulting the specification every time
they use the program.

On a computer like Titan, run on a closed-shop basis,
trivial errors are very time-consuming. If a user or
programmer is in direct contact with the computer, he
can correct any trivial errors on his paper tapes or
cards as soon as they are detected, but if he has to wait
for a run to return to him from an operating system it
can take several days before anything useful emerges.
It is therefore desirable that programs should be easy
to use, and that the content of data tapes should be as
clear to the user as possible.

5. Presentation of data to the Friend

In order to explain the ideas involved, let us examine
a very simple preface, as it would be given to a conven-
tional program, and as it would be given to the Friend.

A conventional “Bond lengths” program (chosen as
an example because it is small and does not involve the
user’s “observations” at all) would take a preface as in
Fig. 1; the right-hand side is explanatory comment, and
would not appear on the preface.

A comparable preface for the Friend would be of the
form shown in Fig. 2.

That is to say, if the user were calculating bonds for a
crystal which he had not previously introduced to the

20z 1Mdy 61 uo }sanb Aq 8Z65.€/8€/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Crystallographers’ friend

system his preface would be as in Fig. 2. In this preface
all the data which would be required by the arithmetic
routine called ‘“Bond lengths” have been listed, and the
preface is comparable with, though longer than that in
Fig. 1. (The symmetry operators there correspond to
a C Face centred lattice, which accounts for the difference
in their presentation; in Fig. 2 we could perfectly well
write

No. of symmetry operators = 2
Symmetry operators
6,y 2) (124 x, 12+, 2).)

It is, however, much more likely that the user has been
working on the crystal for some time, using the different
routines of the system. If his crystal has been given a
title, such as “Osmium tetroxide”, and its unchanging
data (unit cell dimensions, symmetry and latest estimates
of atomic positions) have been given at some earlier run
and kept on magnetic tape, then a sample preface would
be:

Osmium tetroxide
Bond lengths
Maximum bond = 4
Stop

Here the advantages over the old-style preface are
more evident. Indeed, the Bond lengths routine could
assume that the maximum bond were 4 unless told
otherwise; the “Stop” is redundant as the end of the
preface becomes obvious; ‘“Bonds” is a synonym for
“Bond lengths” (see §10), and a crystal name may be
as small as we please.

We have thus reduced our preface to, say,

0sO4
Bonds

which would perform the calculation required, and is
less prone to error than those in Fig. 1 or Fig. 2.

6. Names

In order to interpret a preface such as that given above,
we define the following:

The preface is composed of a sequence of instructions,
such as

“b =2-34"
“No. of atoms =: 3”
“Bond lengths”

Each instruction has a Jeft hand and a (possibly empty)
right hand part. The left hand part is always a name.
A name is defined to be any sequence of symbols ter-
minated by either an = or a newline. Thus in the
examples given typical names are “Bond lengths”, “a =",
“Osmium tetroxide” and ““C Face centred”.

When the Friend reads the user’s preface, a list of all
possible names which it can expect has already been
read and stored. The method of storage and subsequent
recognition is an adaptation of that used in the Cam-
bridge CPL compiler (Hext, 1965). Each name, however

40

Bond lengths
Maximum bond = 4

a=1-23 b=2-34 c =345
Alpha = 90 Beta = 90 Gamma = 90
No. of atoms = 3

Atoms

Osmium 0-25 0 0-26

Oxygenl 0-35 O 0

Oxygen2 0 0-85 0-25

Lattice = C Face centred

Stop

Fig. 2.—The same data as given to the Friend

long, can be held in one 24-bit half-word of store by
“scrambling” it. One character takes 7 bits, giving
3 characters per half-word; if these characters were
being stored with the intention of printing the name out
again, the various half-words would be stored end to
end, and a long name could take up several words of
store. However, when the only property required is
that the name be recognized when it is read again, it is
sufficient to add together the various half-words into
one half-word, which emerges as the scrambled form of
the name. There is a danger here that two totally
different names might accidentally scramble into the
same half-word, but this has not happened with the
few hundred names of the existing vocabulary.

The scrambled form of the name is stored in a table
of 1024 words. For quick access to this table, the
bottom 9 bits of the scrambled word are used as an
address in the table; if the table word so found already
contains a scrambled name, the next is tried, and so on
until there is a space to put the new scrambled name.
When a word is being sought in the table its approximate
position is then known, and it is not necessary to search
the entire table to find it. This technique is only possible
because there is much more space in the table than there
are entries for it.

When the same name is read from the user’s preface,
it scrambles into exactly the same half-word. For the
purpose of scrambling, all spaces and decimal points
are ignored, and upper case and lower case letters are
treated alike, so that “Lattice type” and 1 ATT ice
TyPe.” would produce the same scrambled form. The
1024-word table is then used to look up information
about the name.

7. Data names

If the name refers to some item of data (a data name)
the table would indicate this, and give the system the
address of a piece of program which will read in the
expected item of data. For example, “a =" would
initiate the reading of one decimal number from the
preface, to be stored in the part of the store where
subsequent pieces of program would expect to find the
length of the unit cell side conventionally called a.
“Lattice =" initiates the reading of another name
which in Fig. 2 was “C Face centred”. This name
would then be recognized as a plausible lattice type, and
some identifying integer would be stored.

20z 1Mdy 61 uo }sanb Aq 8Z65.€/8€/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Crystallographers’ friend

On a larger scale, “Atoms” initiates the reading of a
list (in the non-computer sense) of atomic positions, each
punched conventionally as

{label) {(x coord.) <y coord.) <z coord.).

As the number of positions varies from one crystal to
another, this number must have been already read.
The labels and co-ordinates are stored in preassigned
places.

The Friend must know which items of data it has
already read. A 4-word (192-bit) Boolean vector is
kept, with one Boolean entry for each item of data
which could possibly be read. This vector is referred
to in three distinct places. Firstly during input of
certain items of data: if, for instance, all six numbers
which define the unit cell are present, a certain amount
of arithmetic can be done which is required so frequently
in calculations that it is sensible to do it once only and
to store the results. It is possible to test whether these
six numbers are present by consulting the relevant
Booleans, and as soon as all six have appeared the
necessary arithmetic is done.

Secondly, before an arithmetic routine is obeyed
(see §8) the Friend must check that all data essential to
the routine are present. In the example in Fig. 2,
essential data are

a, b, c, alpha, beta, gamma, atoms

In practice we use an extra Boolean called ‘““unit cell”
to represent the six separate Booleans for a, b, ¢, alpha,
beta and gamma. Together with the list of all possible
names that is read first by the system, we have a list of
essential data; the entry in this list for the Bond lengths
routine would be

*Bond lengths
Unit cell
Atoms

(the asterisk indicates an arithmetic
routine name rather than a data
name)

On input of the vocabulary, this would be turned into a
4-word mask with a 1 in place for every item of data
needed. The mask is then compared with that of given
data described above, and the Friend refuses to try to
obey an arithmetic routine if all its data are not present.

Thirdly, we have allowed many of our items of data
to be optional. Much of the input to a conventional
program is concerned with choices which the user does
not necessarily wish to make, such as numbers to scale
output, or maximum values of various quantities. Where-
ever the Friend can make some reasonable assumption
if an item of data is not given it will do so. These
assumptions must, of course, be made immediately
before an arithmetic routine is obeyed, and in order to
discover the presence of such items the Friend must
consult its vector of given data. The apparent omissions
in Fig. 2 as compared with Fig. 1 are all dealt with by
the Bond lengths routine in this way; the absence of a
maximum bond for which angles are to be calculated,
for example, is assumed to imply that no angles are
wanted.

41

8. Routine names

So long as we are reading and recognizing data names,
we are simply assimilating data, with no idea of what is
required subsequently. The other commonly occurring
type of name is the routine name, such as “‘Bond lengths”,
“Least squares refinement” or “Stop”. The routine
name has no counterpart on the preface for a conven-
tional program; the user would have selected a parti-
cular program by providing a paper-tape copy of it, or
demanding it from a certain place on a magnetic tape.
If he wishes to obey more than one program he has
more than one run.

A routine corresponds roughly to one conventional
program to do arithmetic. It can vary in size from a
full-scale refinement routine of several thousand orders,
to the single order ‘“Stop” (which, of course, simply
marks the end of the preface, and is a historical relic
from the time when there was no easier way of doing so).

The routine name could be treated by the Friend in a
straightforward way; on recognizing the name, the
Friend checks that it has all essential data, reads down
the routine from magnetic tape, and enters it. The
routine first assigns reasonable values to any optional
data which has not been given on the preface, and then
performs the arithmetic requested, prints some results
and returns to the system.

In practice, the user tends to think first of the routine
he wants, and then of the data he must give it. Thus in
Fig. 2, if we tried to obey “Bond lengths” as soon as
it had been read from the preface we would have no
data for it at all. So on recognizing a routine name, we
remember this name, but do not actually call the routine
until we find another routine name further down the
preface. In this case, data would be absorbed until the
name ‘“‘Stop” was recognized, and only then would the
Bond lengths routine be obeyed.

9. Sequence of programs

A routine returns control to the Friend when it has
finished the arithmetic required of it. The Friend then
continues reading the preface, obeying routines as they
appear, in the delayed manner described above. In
this way, a user can call several routines in sequence, or
even the same routine several times. This feature is
useful in crystallography for several reasons. For
example, in the early stages of collecting observations,
the user may require several different types of correction
to be applied to them in sequence. In the past he has
had to run several different programs to do this, at best
preserving the partly-processed observations on magnetic
tape, and at worst repunching them in different formats
for every program. Again, when he is refining his
suggested structure of a crystal, he may wish to try
various values of one variable simply to see what
happens. It would be quite plausible on a large and
fast computer to use this apparently rather crude and
wasteful technique on small amounts of data. A
portion of preface reading

20z 1Mdy 61 uo }sanb Aq 8Z65.€/8€/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Crystallographers’ friend

R factor
Number of new temperature factors = 1

Temperature factor = Na6 3-4
R factor
Temperature factor = Na6 3-6

where “R factor” is a routine which calculates how good
a fit the user’s suggested structure gives with his obser-
vations, would cause the Friend to perform the necessary
repeated calculations of this fit, varying only the tem-
perature factor of the atom labelled Na6 from one
calculation to the next.

A sequence of programs also proves useful towards
the end of a refinement, when it is sometimes the case
that the computer can perform the refinement auto-
matically. By this time all relevant data have been
given, and such a preface would contain a list of the
routines required and little else. For example:

Comment

(this could be omitted if the
previous run had 4 also)

Least squares refinement
No. of cycles = 4

Difference density map (where exactly what to print
has become standard, and

so is omitted)
Bonds

Contour slant plane (a routine using a curve
plotter to give results to be

published)
Equation of plane = 6-2x 4+ 3y +z =4
Stop

Such a sequence would replace at least four consecutive
runs of discrete programs.

10. Synonyms

A system of data presentation based on words rather
than numbers is liable to errors for various reasons. If
a user has always called a standard routine “Distance-
angle” he will probably forget that in the Friend it is
“Bond lengths”; he may well find it difficult to spell
“equi-inclination Weissenberg”’, or to remember whether
or not the hyphen is present; if he is American he will
want to refer to “reflexions” and ‘‘centered”; and even
if he has written everything correctly, if a data tape
becomes too verbose there is more chance of error in
punching the tape.

We therefore introduce a system of synonyms. When
the vocabulary available to the user is first read by the
Friend it is listed in the form

{(Name) {(Number)

where the number gives an entry in a table linking the
name with a suitable piece of program. Thus a typical
entry might be

Maximum bond = 64
where entry 64 in a table points to a piece of program

42

which reads a number and stores it in a place where a
later routine will expect to find the maximum bond.
By convention, if an item of the vocabulary is preceded
by an asterisk it is expected to be a synonym, and to
have as its (number> a number which has occurred
before. It is an easy matter to treat the two names
identically; the scrambled synonym is added to the
1024-word table (described in §6) pointing to the same
piece of program as does the name for which it is a
synonym. This facility takes no extra store, as the
1024-word table is only sparsely occupied, and it gives
a very wide range of vocabulary. We can cater for the
user in a hurry by making “EW” a synonym for “‘equi-
inclination Weissenberg™”; for the American by
“reflexion” for ‘‘reflection” wherever it occurs, and
even for languages other than English if the need were
to arise.

The present vocabulary consists of about 500 names,
and about 350 of these are synonyms. If we find a user
making some plausible mistake in punching a name, we
can add his version to the vocabulary as a synonym.

As the Friend may need to refer to items of the user’s
data by name, we keep a packed, character form, version
of all names, but not, of course, of synonyms. Together
with these packed names we store other words and
sentences, to be used as headings for output or diagnostic
messages. These messages and headings are read by
the Friend in exactly the same way as are the names of
the users’ vocabulary.

11. Structure of the system

The largest part of the Friend is naturally the set of
arithmetic routines. These are held ready assembled on
magnetic tape, in a form suitable for transference to a
fixed part of the store (the routine space) when they are
called for by the user. Arithmetic routines together
with their working space vary greatly in size, and any
store not required by a particular routine is given back
to the Supervisor. Thus the space used may expand or
contract in order to make the most efficient use of the
computer. Those routines of the Friend itself which are
not constantly in use, such as input routines, are also
held on magnetic tape and read down only when they
are needed.

Below the routine space is the user’s data space, into
which all the data given on the preface are stored. This
space must be accessible to every arithmetic routine. As
amounts of data also vary greatly from one crystal to
another, it would be desirable to allow this data space
to expand and contract as does the routine space.

Below the user’s data space, at the start of the store,
there is all the program and working space which needs
to be present permanently. The program here includes
the small controlling program, the output routines and
magnetic-tape routines.

12. Control program

The tools available to the input section of the control
program are:

20z 1Mdy 61 uo }sanb Aq 8Z65.€/8€/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Crystallographers’ friend

(a) a routine to read a name and scramble it,

(b) routines to put a name into the 1024-word table
and to look up a name in it,

(c) various conventional input routines to read decimal
numbers, integers, or data in special formats such
as (1/2+x, 1/24y, z).

The number routines have been written specially,
because it is useful to be able to read a number ter-
minated by any symbol, as in

Alpha = 87degrees 42minutes

Input tapes for the Friend are usually produced by a
Titan Flexowriter, which possesses a ‘‘back-space” and
a “tab”. The input is therefore “line-imaged”; that is,
it is read a line at a time, and an image is stored corre-
sponding to the print-out of the tape. Multiple characters
are allowed, so, for instance, “6” is a synonym for
“theta”.

13. Preliminary reading of vocabulary

The Friend is stored on magnetic tape already
assembled and with all the vocabulary available to the
user “built in”. It would be tedious to build in the
scrambled form of names, or even the packed messages
suitable for output, so use is made of the routine (a) of
§12 to read and store lists of various names before the
preface is read. The lists which comprise the whole
vocabulary are:

(a) All names expected as data names, and their
numbers and synonyms.

(b) All names expected as program names, and their
numbers and synonyms.

(c) For each program, a list of all the essential data.

(d) All error messages.

(e) All headings, or groups of symbols required to be
output. :

When a change is made to the program or the voca-
bulary, the program is reassembled, the vocabulary is
read and stored, and the entire system is filed on
magnetic tape.

14. Interpreting the preface

The preface is “interpreted” in the sense that it is not
compiled; the instructions of the preface are obeyed as
they appear.

The simplified flow diagram for the control program,
disregarding all use of magnetic tape for data, which
will be described in §15, is shown in Fig. 3.

The process stops when the routine which is about to
be labelled “previous” is ““Stop”.

15. Magnetic tape

The technique of allowing several routines to be
called sequentially in the same run allows data common
to all routines to be given once only; what the user
would really like to do is preserve his data and inter-

43

oy

Read and scramble name ’ |
¥ t

| |

Recognize name;

branch on data or
routine name

Remember it ; if not ’

first on preface, get
previous routine
and obey it

Enter subroutine to
assimilate givendata

#1 Routine |¢ i Data

| l

Fig. 3.—Simplified flow diagram of control program

mediate results from day to day, or even month to
month. The only removable form of storage on Titan
is a reel of magnetic tape.

Ideally, each user has his own magnetic tape; in
practice this would be so operationally inconvenient
that we must devise some system of using one long tape
for, say, 10 or 20 users. At present the Friend is held
on this same tape, but it may later become part of the
magnetic disc filing system currently being developed on
Titan.

In order that a crystal should be recognizable from
one run to the next, its data are given a title (such as
“Osmium Tetroxide” in the example in §5) which is
read as a “name” and scrambled exactly like any other
name. If the first name of a preface is not a recognizable
data or routine name, it is assumed to be the name of a
crystal. From the magnetic tape a dictionary is read
down and scanned for the scrambled form of the crystal
name. Assuming the user has been doing calculations
for this crystal for some time, there may be several
dictionary entries for it; the first of these points to
blocks on the tape which hold the latest copy of all the
data ever read for this crystal. These data are read
down into the store into the user’s data space of §11.
Any new data read from the current preface will over-
write this, so the user has the option of keeping any
particular item or reading in a new value for it. The
4-word Boolean vector describing which items have been
read is also preserved from run to run. At the end of a
run the current state of the user’s data space is written
back to the magnetic tape on top of the copy which was
read at the start.

Users also wish to store intermediate results; one
common example is in the collection of observations
from an automatic diffractometer. Observations may
be being measured at a rate of, say, several hundred a
day, and the user would like the first set to be examined
for plausibility before subsequent sets are measured.
The observations, then, are presented for processing in
distinct sets, to be concatenated finally. Each set is
partially processed and then written as a document to
magnetic tape and given an entry in the dictionary.

Various types of document are stored in this way;
when a set of suggested atomic positions is improved by
a refinement routine into a better set, the original
positions are put as a document on to tape in case the

20z 1Mdy 61 uo }sanb Aq 8Z65.€/8€/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Crystallographers’ friend

user wants to revert to them; several sets of observations
(depending, perhaps, on whether or not certain dubious
ones are included) could also be held, each set having
been given a serial number for reference. In fact, new
types of document occur whenever a routine is added to
the system.

16. Error detection and information for the user

If a system is going to perform calculations for a user
making assumptions about the user’s data, either because
the user has never supplied the data and wants some
reasonable values to be assumed, or because he supplied
them weeks ago and does not want to do so again, the
user must know what assumptions are being made. A
balance must be struck here between withholding infor-
mation the user would consider essential, and printing
out everything remotely connected with a calculation
every time it is performed. The latter will in some cases
produce so much printing that the user will ignore all
of it.

The general principles which have been followed are:

(a) always to point out any oddities,

(b) in general to suppress printing of more usual
information, but to have it available if the user
requests it.

(a) includes the detection of all sorts of error. If, for
example, a set of “space group operators” does not
form a group (in the mathematical sense), it is pointless
to proceed with any calculation. The Friend’s suspicions
of what is wrong are printed out in English, together
with helpful information such as the last line read from
the preface (in case the trouble stems from a tape-
reader error) and any suggestions the Friend might have
for remedying the situation. In this particular case the
Friend would stop altogether, as the error is too serious
to correct. On the other hand, if a user gives a strange
value for some physical quantity this would be pointed
out to him as disturbing, but the calculation he had
requested would proceed, on the grounds that he has
probably some good reason for it. In the same category
would come the Friend’s reaction to being told
“c = 5-3214” (where c is the length of a cell side, and
unlikely to change once measured) after it has been
working with ¢ = 5-2314. The user would be informed
of the change and the new value would be accepted.

It is considered essential to take a great deal of care
in giving all diagnostic information. When a user is
almost entirely separate from the computer, he must be
protected from all forms of machine-dependent error
indications. For instance, in machine code programs
when anything goes wrong, Titan will print a “monitor”
which is helpful to the programmer but unintelligible to
the user. All possible monitors, therefore, are trapped
and turned into messages like:

“Square root of negative number; should not happen;
program or machine error: try again and see Judy if it
happens twice”.

44

If a user wishes to have certain features pointed out
on his output he can take advantage of the “comment”
facility. As described in §10, if a name starts with an
asterisk this fact is detected specially, during the reading
of synonyms in the vocabulary. This feature is used
during the reading of the preface in a different way. A
line of preface preceded by an asterisk is treated as
comment, and copied straight to the output and ignored.
In this way the user can, if he wishes, describe in detail
any of the features of his run which might not otherwise
be apparent when the output is studied later.

Principle (b) demands a number of decisions. In
order to deal with these, we have various Boolean items
of data which are relevant to one run only, and are not
preserved from run to run. Almost all of these are
indications of whether or not to print any particular
quantity which is a by-product of the calculation. For
example, the routine which produces Lorentz and
polarization corrections calculates for these the quantities
“theta” and ‘s squared” which the user may or may not
want. The user’s vocabulary contains the names

Print theta
Print s squared

which set these Booleans for this particular run. This
general scheme extends to all ‘“optional” output. If
any such output is not asked for explicitly it is not given.

17. Information service

Following ideas from Project MAC at MIT (see, for
example, Neisser, 1964), as much information about the
system as possible is held with it on magnetic tape.
This includes both information for users (up-to-date
copies of the users’ manual, the date when the manual
was last changed and what the changes were, sample
prefaces for standard calculations, and anything else
considered to be remotely helpful to the user) and for
programmers (lists of allocation of working space, the
theory behind the arithmetic routines, detailed specifi-
cation of every routine and so on). All this information
is accessible in exactly the same say as is the Frien