Networks for real-time programming

By C. S. E. Phillips*

A method of real-time programming is described which has been used for an experimental com-

puter controlled radar.

network analogous to a circuit diagram.
The network can be drawn up without either a detailed knowledge of pro-

real-time system.

gramming or the formulation of intricate flow diagrams.

This method, which may be of general interest, uses a special kind of

The network is used to analyse and specify precisely a

The effect of changes to the network

can be readily observed and easily performed. The program is broken down into manageable
sub-units which facilitate programming.

The computer program or programs required for the
experimental automatic surveillance radar have already
been described in general terms (Phillips, 1964) as have
the main features of the practical system. Since that
time we have constructed the various parts of the radar
and connected them to an Elliott 920 digital computer.
Apart from a change of interface and recoding no
changes are anticipated when this computer is replaced
by a Marconi Myriad in December 1966. We had
intended to use the 920 primarily to establish the inter-
connections and to feel our way to an understanding of
the programming requirements when the Myriad was
installed. However, the interface work took less time
than expected as did the short programs required to test
all the parts of the radar (aerial, modulation and
receiver control, plot extractor, etc.). It soon became
clear that these small programs were easy to write and
debug because (a) they were very short and (b) they
were run separately and (c) they were written by people
directly concerned with the equipment controlled. It
was also clear that the programs would not be able to
run together without considerable effort on our part.
In fact it was not easy to see how the whole job could
be done unless it were done by one person. Further-
more, it was much easier to describe what the system
was to do than to say precisely how it was to be pro-
grammed. This was due to the complex nature of the
program, the experimental nature of the work—the
overall program has to be very flexible—and the inter-
actions between parts of the program arising from real-
time factors.

Clearly one programmer, even if he were very skilful
and farmed out subroutines at a later date, would have
taken too long to do the work. The resulting program
would almost certainly be out of date before it was
finished. What we needed was a way of precisely specify-
ing the system so that the whole job could be divided
into small parts, each part worked upon separately and
then joined together like Meccano. Parts could then
be added or replaced in the light of experience and the
effect of these changes immediately visualized. We
had originally intended to use subroutines for this pur-
pose, but the complicated interactions between them
due to the real-time nature of the problem would have

* Royal Radar Establishment, Malvern, Worcestershire.

46

remained. In the method to be described a network is
drawn up which can be thought of as specifying these
interactions; non-interacting subroutines of these sub-
routines are ‘“‘private” and are not mentioned on the
network.

Network symbols

The symbols used are shown in Fig. 1. There are
only two main “‘components”, data and programs, and
the connecting ““wires” show the direction of data flow.
The word data is used here in its most general sense
covering numbers, code-words, tags, counts, switches,
etc. It is useful at this stage to imagine a group of
programmers working under a system analyst who
allocates the work. The programmers need not know
of each other’s existence and must on no account make
private arrangements with each other. The data we
are concerned with in the network is publicly announced
to all programmers. Any private data created by a
programmer, that is data considered by the system
analyst to be of purely local interest, is “lost” inside
the program and is therefore of no concern to the net-
work. However, the system analyst should always try
to turn private data into public data since this increases
the flexibility of the system.

The simplest data is in the form of a fixed box where
words are kept in successive locations. The diagram
shows words entering and leaving a box. The pro-
grammers know the layout of the words in the box.
They do not need to know the absolute addresses since
these are arranged by the system analyst. The data
boxes are thus addressed by name and the individual
words in the box are addressed relative to the start of
the box.

We have used two extensions of the data box, viz.
circular and chain lists. The circular list contains many
sub-blocks of data in successive locations, stored by
program in the order in which they are generated. The
list is of fixed length so that when it is full the input
data is automatically re-directed into the first locations.
The newest data thus circulates round the list, over-
writing the oldest data. The diagram shows two small
data boxes, whose positions are publicly known, con-

202 Iudy 61 U0 1senb Aq 2G65.2€/9%/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Real-time programming

FIXED BOX
.] _QQQ,
ORDINARY (BASE LOAD)

2. PROGRAMME
OUTFUT
s (D0

CIRCULAR LIST

CHAIN LIST

L,

INTERRUPT PROG.

8
O—®

O\

k. CONNECTIONS

5. IMPOSSIBLE
CONNECTIONS

PERMITTED
CONNECTIONS (Example)

Fig. 1.—System symbols for real-time programming

taining input and output pointers, i.e. the current
addresses for input or output of the next data sub-block.
The output pointer box could in practice be grouped
with all other output pointer boxes. This larger box
would then be the public list of output pointers. The
input box could contain other data required to read
from or write into the list. This information might
consist of the list length and the size of each sub-block
of data in the list. It is therefore possible to change the
sub-block size and list length at a later stage without
necessitating program changes. Knowledge of the input
pointer also enables other programs to read indepen-
dently from the list without running ahead of the input.

The chain lists are similar except that the successive
sub-blocks of data contain pointers to the succeeding
and preceding sub-blocks. This type of list is used to
facilitate the storing of data sub-blocks so that they
may be addressed in an order dependent on some
quantity (e.g. azimuth angle) in the sub-block rather
than the time of generation of the data itself. Since,
in a chain list, data sub-blocks can be interposed, it is
possible to have more than one input to these lists.
This facility is shown in the diagram.

47

Programs

Programs are drawn as a circle with a P inside, the
different programs being distinguished by a suffix.
Interrupt programs are distinguished by a wiggly or
fertility line from a device whereas ordinary base load
(non-interrupt) programs are assumed to be con-
tinuously operating under control of a master program.
The diagrams show (1) an ordinary program taking in
data from a single data source, operating upon it in
some way and transferring the result elsewhere, and
(2) an interrupt program being fertilized, but performing
no useful work.

Devices

The computer communicates with the outside world,
taking data in from or putting data out to devices of
one kind or other (punches, readers, tape-decks, A/D
and D/A equipment, etc.). These devices are repre-
sented by a cross-hatched circle with a suitable letter
inside. The diagrams show (1) a program generating
data, and transferring it to a device, (2) a program taking
data autonomously from a device, and (3) a device

202 Iudy 61 U0 1senb Aq 2G65.2€/9%/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Real-time programming

which triggers an interrupt program which subsequently
transfers data to the same device.

Connections

Thin lines represent the flow of data, the direction of
flow being highly significant. The diagrams show
(1) a program taking data from the left-hand box,
operating upon the data in some way and transferring
results to the the right-hand box, (2) an interrupt pro-
gram transferring data from a box to a circular list.

It should be self-evident at this point that direct
connections between data boxes and between programs,
as shown in the next diagrams, are quite impossible and
must never be used. The final diagram (6) of Fig. 1
shows a simple example of a possible program “circuit”.
Device D1 triggers off program P1 which takes in data
from DI, operates upon it in such a way as to transfer
one set of data to the box and another set of data to
device D2. (The fact that P1 is not further sub-divided
means that some of these operations are common and
that both operations are required to be performed conse-
cutively.) Program P2 reads data from the box, though
not necessarily all of it, operates and transfers data to
the circular list. Program P3 also takes data from the
box, combines it with data from the circular list and
transfers the result to device D3. The arrangement of
data in the box and the circular list is known to the
system analyst and to the P2 and P3 programmers, but
if a separate programmer writes P1, the P1 programmer
needs to know only the arrangement of data in the box.

Multi-level interrupts

A great convenience for real-time work is the external
interrupt. This is a wire or wires which, when energized
by an external device, causes the computer to link out
to special interrupt programs. The program jumped to
is usually reached in this way only and the program
jumped from is either another interrupt program or a
base level program. The base level program is presumed
to be always operating when no interrupt calls are
present, and is reverted to after all the interrupts have
been dealt with.

The simplest form of multi-level interrupt is a single
wire which calls for a general multi-level interrupt pro-
gram whose first job is to decide which device is calling.
A word is read which names the device and thus deter-
mines which branch of the interrupt program is to be
used according to a predetermined priority. This is a
case of multiple priority interrupting on one level.

If the interrupt rate is high the time spent sorting out
the calls can become significant. For this reason the
Elliott 920 and Marconi Myriad (among others) provide
a more sophisticated multi-level system where several
wires are available. In this case each wire directly
initiates a different interrupt program (each one of
which could of course control multiplexed priorities as
in the single-level case). Clearly it could arise that
more than one device calls simultaneously, or that a

48

high priority device interrupts one of lower priority.
Various hardware and program methods which vary
from one machine to another are available to deal with
these circumstances. The exact details do not concern
us here so long as it is realized that in a multi-level
system each level constitutes an independent program
(i.e. a separate program sequencer is used) and the
computer is time shared between each level and a non-
interrupt or base level according to some system of
priorities.

This does not mean that programs on one level cannot
communicate with programs on another. In the example
given in Fig. 1, the interrupt program P1 fills the data
box. However, programs P2 and P3, which use this
data, can be written on any other level. The advantage
of the interrupt in a real-time system is that the times at
which programs are run can be arranged to be dependent
on the devices themselves, and the advantage of the
fast multi-level interrupt system is that special-purpose
buffers and computing equipment need not be built
into the external devices. Of course, some devices can
be considered as mere slaves of the computer and can
be driven (via direct data transfer) without recourse to
interrupt programs.

The master programs

It should be evident from the foregoing that in a
more complex network, such as these given in Figs. 2
and 3, there will be a number of programs grouped in
levels. Although it is a simple matter to redistribute
the programs (possibly following system changes), each
group of programs, once constituted, is independent of
all other groups in the way described. Each interrupting
level will cause its own group of programs to run, and
the allocation of programs to groups must depend on
this fact. However, we must now consider the frequency
of running programs within the groups—particularly the
base level group. The simplest method is to run them
one after another in a fixed order. This hardly requires
an executive or master program at all. Usually a more
complicated arrangement is required which varies the
order according to the quantity of data in a list, to the
time elapsed since the program was last performed or
according to an external operator controlled switch.
Following this procedure “important” programs are
not kept unnecessarily up to date and ‘“‘unimportant”
programs such as self-test and calibrations are not
omitted altogether. In general, therefore, one may
require a separate master program for each level. No
master program will be complicated, since it gets all its
information from the network, and on some levels
master programs can be dispensed with altogether.

FMCW automatic surveillance system

The networks as envisaged at present are shown in
Figs. 2 and 3. The only change proposed for the
Myriad is to make use of the larger number of interrupt

202 Iudy 61 U0 1senb Aq 2G65.2€/9%/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Real-time programming

— c
LIST)
2
P,
s
LIST)
D3 &
of¢
T
LIST)
Pl
INFUT COUNTS
N(aH) FROM CAL. LIST
SURV LIST AND
GEOG FEATURES
LISt
o
v A
oA
L2
BE. | orr
V| TanLE
W cH)
N P1 0

CAL
#(Ch,fn,Sb
och
A. SIM
96 {
2]
S
SWITCH \
CONTROL @m\\\b
I
TRACK
LIST
{CHAIN
C DATA
op
P7 fa Sb gA“;‘X-
ron | £ (0
NEXT
T ORC GEOG
DATA
£(2)s(0)
A ()
CODE
0 (Avs)
LAREL, Ty fp
v (rA, fB)

Fig. 2.—FMCW surveillance system analysis

levels. The multi-level programs of Fig. 2 are as follows:

Level 1. P] triggered by azimuth pulses from rotating
aerial.
P2 triggered by radar plot extractor.

P2 triggered by Timer.

Level 2.

(owing to shortage of levels P2 and P} have to be run
on the same level).

Level 3. P} triggered by switches (and also on-line
teleprinter, digital PPI and digital strobe
not shown on the diagram).

Level 4. P4-P10 operated by Master program.

The main omissions from the network of Fig. 2 are
the outputs which vary with the particular experiment
and consist of printing the contents of one of the data
blocks or lists. Fig. 3 shows the output arrangements
as part of a more general purpose control system
described in a following section.

Data lists (Fig. 2)

C List Fed by P2. Contains calibration plots.

S List Fed by P2. Contains plots obtained when
the radar is operating under surveillance
mode.

49

T List Fed by P2. Contains plots obtained when
the radar is looking for plots of tracks.

F List Fed by P3. Contains plots that were
expected, but the radar failed to detect.

Control Fed by P10. Contains all sets of data

List necessary for the control of the radar in
the future (depending on list length).

Track Fed by P9 and P4. Contains all informa-

List tion on tracks and initial detections. This
list may be considered as the “output” of
the radar system.

Data Boxes (Reading from left to right and starting at
the top left-hand corner.)

Rev count Fed by Pl1. Contains angular count
measured in eighths of a revolution up to
a maximum of 2! revolutions (Elliott 920)
or 22! revolutions (Marconi Myriad).
This data is used by many programs to
obtain “absolute” azimuth.

Cal Fed by P6. Contains the most recent
(smoothed) measurement of the calibra-
tion in range, and azimuth of each radar
channel as a function of modulation
characteristics. Also contains the ampli-
tude of the calibration signals for
maintenance purposes.

202 Iudy 61 U0 1senb Aq 2G65.2€/9%/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Real-time programming

Real-Time Fed by P2 and P3. Contains the number

Box (N) of plots since the last control change,
all information about the waveform trans-
mitted, the mode (surveillance, tracking
or calibration) and an ON/OFF switch
(this switches off P2 until transients have
died away).

Switch Fed by P13. Contains number in switches

Control when button last pressed by the radar
operator.

Input Fed by P2. Contains numerical total of

Counts inputs on each channel during S mode
since P8 last used.

C Data Fed by initial input. Contains angular

positions of calibration simulators. Also
list of all modulation frequencies, sideband
numbers, doppler frequencies and channels
over which calibrations are required.

Surv. Data Fed by initial input. Contains list of
elevation beams and order in which they
are to be used during surveillance periods.

Noise Fed by initial input. Contains number of
Paints noise paints permitted on each channel
(Ch.) during a given period of time.

04 and Fed by P8. Contain absolute azimuth and
Old 6, beginning and end of given period (see

Noise Paints above).

Next T Fed by P7. Contains address of track (in

or C Track list) or calibration plot which is
next in azimuth order to be placed in
Control list.

Geog. Fed by initial input. Contains elevation

Data contour of surrounding territory, special
side-band requirements and false alarm
variations as a function of azimuth.

Amp. Fed by P8. Contains list of voltage levels
Table at present used on each channel (i.e. when

last set in) determining detectability.

V/Ch Fed by P8. Contains channel number of

ON/OFF any alteration required. If none required
switch to OFF.

Code Fed by PS5. Contains information on
Label mext control required before adding any

voltage level changes.

far [Fed by initial input. Contains calibration

V(fa,fs) of main modulating oscillators. Cali-
bration monitoring may be added later.

Devices
T Timer, P3 arranges to call itself in a given
period of time (measured in azimuth
pulses).
R Radar.
0 Azimuth pulses from rotating antenna.

Brief description of process

Starting with the radar control program P3, this
changes the radar so that it adopts the new mode

50

required, all details being noted in the Real Time Box.
This program would operate at variable speeds up to
100 times per second. Any plots obtained are taken in
by P2 and after consultation with the Real Time Box,
counted in “input counts” and passed to either C, S
or T list. Programs P6, P9 and P4 read these lists.
Program P6 reads the C list and updates calibrations.
Program P9 reads the S list, eliminates any non-random
interference, recalibrates the remainder and puts them
on the track list. Program P4 compares the track inputs
with the track, finds the best correlation, calibrates,
updates and smooths the track, predicts the position
when the radar could see it again and works out the
most suitable transmission. Depending on the use to
which the radar is put, outputs would normally be
selected from the track list.

Proceeding in a clockwise direction, program P7 takes
either the ‘“next” track from the track list or the next
calibration plot required. Having decided which comes
first, the track having precedence in the event of conflict,
program P5 mixes in the surveillance and geographical
data and finally decides on the next control operation.
Program P10 is used to add in any amplitude selection
level changes, and the control data is put on the control
list. Some time later P3 picks up this data, marks the
track in the track list and the cycle is complete. If no
returns are obtained the expected plot is placed on the
Failed list (F) and the relevant track is informed of the
failure. All lists are arranged to be in azimuth order
(including the track list, where the azimuth order is
based on predicted and not present positions). This
together with the use of labels ensures negligible time
wasted searching through lists.

Program P2 in conjunction with P8 arranges that the
surveillance false alarm rate is kept constant. At
infrequent periods P8 compares the surveillance input
counts on each channel with the desired rate given in
“Noise Paints’ and adjusts the voltage level accordingly.
This is a form of long term a.g.c. Short time level
changes are dealt with in P5 using “Geog. data”. This
is an example of a type of program which, it is believed,
will have a profound effect on the design of the radar
equipment itself.

Switch control network

The purpose of “switch control” is to allow manual
control of the overall system. As envisaged at present,
these manual controls are for two purposes. One is to
permit on-line display or printing of any quantity in
any list or box. The other will permit manual intro-
duction of new programs and alteration of the ‘“‘fixed”
lists of basic data. Although these manual controls are
essential for the experimental development of the auto-
matic radar as a whole, some would be required in a
developed system, since conditions will vary from one
application to another.

The detailed system, devised by Dr. J. R. Prior, is
shown in Fig. 3. A desired manual operation is set up

202 Iudy 61 U0 1senb Aq 2G65.2€/9%/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Real-time programming

36 BIT
CODE
WORD

VARTABLE LENGTH

LIST

MODIFIER

LIST A
OR 23
PROG.
LIST
OR
PROG.

CIRC. LISTS
Pj
CIRC. GODE 1 19 <
LISTS :
3 ~
P38 \ \
4 3
2
CHAIN
LISTS
LISTS

Fig. 3.—Switch control network

on the switches in coded form. This code is divided
into two parts, one part, “PROG”, defining the addi-
tional program requested and the other part,
“MODIFIER” specifying the information required by
that program. For example, PROG could refer to a
general program for printing the surveillance list, and
the bit pattern of MODIFIER could determine a
certain part of that list. A zero MODIFIER signifies
that the program must be switched off.

When the operator presses the switches button,
interrupt program P13 enters a number into the NEW/
OLD box at a location determined by PROG. Each
PROG location is divided into a NEW and an OLD
part and P13 always feeds the NEW part. The number
fed in is in some cases the MODIFIER itself, but
certain MODIFIERS are detected by P13 as “indirect”.
In these cases the MODIFIER is used to access the
number from the “36 BIT CODE WORD LIST”.

Programs P14, P15, P16 for the punch, P18 and P24
for the P.P.I., P20 and P22 for the digital to analogue
converter and P23 for list or program changes operate
independently of the switches interrupt program P13.
Each individual program first checks whether there are
new operator demands, by comparing the contents of
NEW and OLD locations. If they are different the

1

OLD contents are replaced by the NEW contents and
the program is changed.

The boxes labelled ““code”, which are used by P14
and P18, enable these programs to operate on different
lists when these are members of a closely similar group.
This code is fed by a master program P12 or P19 which
is unaffected by the switches. The digital P.P.I. master
program P19 controls the sequence P18 and P24, all
three programs being on level 3 interrupt. The interrupt
arises from the device labelled “osc” which controls the
frequency of operation of this particular group of pro-
grams. The frequency of this oscillator can be manually
set at a rate which provides a sufficiently good picture
without stealing too much computer time.

Of particular interest is the display of the ‘“Real-Time
Box” (see Fig. 2) via program P22. This program is
entered on level 2 after P3, thus ensuring that the actual
“instantaneous” changes in radar control are correctly
displayed in real time via a D/A converter and oscilloscope.

Conclusion

At the moment of writing (December 1966) all the
programs of Figs. 2 and 3 have been written and run
together satisfactorily. A simplified P4 is being used to
close the main loop of Fig. 2 and the radar control

202 Iudy 61 U0 1senb Aq 2G65.2€/9%/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Real-time programming

program P23 of Fig. 3 has been greatly expanded.
The network diagram has proved admirably suitable as
a means of bridging the gap between intentions and
specification. Thus its first advantage lies in its inherently
simple yet precise manner of specifying a real-time com-
puter problem. In the very short time it has been in
use, the rate of completion of programs has been very
high so that its second advantage lies in the breaking
down of a complex system into smaller units, thereby
enabling a group of programmers to work in parallel
on relatively simple programs. Its third advantage is its
flexibility as shown by the ease with which additions and
modifications have been made. It is thus particularly
suited to experimental programming and to those
systems which may require development. The fourth
and overriding advantage is its ability to facilitate the
running together of separate programs. Here we have
found that a partially completed network can be used
as a vehicle for testing a new program.

Reference
PuiLLips, C. S. E. (1964).

Although the main spur for the work was the need to
find a manageable method for the real-time on-line pro-
gramming of an automatic surveillance radar, it is clear
that the method could be applied in many other fields.
Although the present work is being carried out in
machine code a further improvement could be obtained
if the detailed programming were to make use of a high
level language, such as JOVIAL or CORAL. The
language must, of course, be suitable for on-line work,
i.e. it must be able to handle interrupts and preferably
have other special features as well, but these require-
ments do not in any way arise from the use of a network.
One can imagine in the future the combination of a net-
work and a high-level language so that quite complex
control systems could be planned and developed with
comparative ease. As far as future ground surveillance
radars are concerned, this may lead to a general-purpose
method of data handling and control, for radars with
different, and variable, physical characteristics.

“An Automatic F.M.C.W. Surveillance Radar”’, Proc. Eighth AGARD Avionics Panel Symposium on

Radar Techniques for Detection, Tracking and Navigation (September 1964). Also R.R.E. Memorandum No. 2324.

Book Review

Numerical Processes in Differential Equations, by Ivo Babuska,
Milan Prager and Emil Vitasek, 1966; 351 pages.
(London and New York: John Wiley and Sons Ltd., 63s.)

This is a translation of a book published in Prague in 1964. A
short introductory chapter is followed by one on the stability
of numerical processes in general. This starts with examples
of simple calculations performed on different computers;
the diversity of the results for the same calculations is illumina-
ting. The authors then introduce their concepts of local and
global stability, which are illustrated by examples drawn from
recurrence relations and matrix processes.

Chapter 111, on initial-value problems for ordinary differen-
tial equations, concentrates chiefly on classical recurrence
methods and Runge-Kutta methods. The problem of
deriving satisfactory error estimates is also discussed. There
follows a chapter of 150 pages on boundary-value problems
for ordinary linear equations; an interesting range of topics is
treated, including factorization and variational methods.

The fifth chapter, on elliptic partial differential equations, is
devoted to the derivation of the relevant finite-difference
equations, and the solution of the resulting linear systems by
direct or iterative methods. The book concludes with a short
chapter on parabolic equations.

There are two disturbing features which recur throughout
the many numerical results displayed. First, the graphs of
errors, in various processes, due to round-off, against the
reciprocal of the step length, indicate’ that progressive re-
duction of the interval eventually gives rise to larger errors.
The implications of this phenomenon are disturbing, since it
appears to rule out the possibility of ever ensuring that the
numerical results are independent of the interval used. In

52

fact, however, it is possible to prepare programs based on
Runge-Kutta formulae, for example, which do not possess
this defect. Secondly, the numerical results presented seldom
agree with the exact results to more than a few of the figures
quoted, and the uninitiated reader may falsely conclude that
higher accuracy is unattainable for problems of the type
considered. Again one may cite the example of Runge-Kutta
methods which may be programmed to yield an accuracy
comparable with the working accuracy.

The reviewer is also not entirely happy about the definitions
of global and local stability of numerical processes. Each
of the recurrence relations used for illustration (on pages 28
and 29) arose “from the solution of a simple system of
differential equations”. Failing an exact solution of the
recurrence relation, values of the solution to the differential
equation would have made the results more revealing.

The book is generally well produced, although the reviewer
found a few misprints. Two coefficients are wrong in the
formula of Huta on page 88. Incidentally, this is a thoroughly
bad formula in practice in view of the size of some of the
coefficients, and has been completely superseded by the formu-
lae of J. C. Butcher (Journal of the Australian Mathematical
Society, 1964). The last term in the second equation of (2.4.1)
has an index missing. There is an error in the scale for the
abscissa of the graph of Figure 3.4, and the coefficient of y, in
Example 4.14 should read —2°0225. None the less this book
can be commended to research workers in the field as it
contains many stimulating ideas and treats some topics not
easily found in extant literature.

A. R. CUrTIS

202 Iudy 61 U0 1senb Aq 2G65.2€/9%/1/01L/3101e/|ufwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

