An index directed compiler
By R. A. Brooker* and S. R. Clarkf

This paper describes a system for discriminating between many possible combinations of con-
ditions and invoking a routine to deal with them. It is illustrated with reference to a situation
which may arise in a compiler, namely the treatment of different combinations of operands and

operators.

We describe the technique used for organizing the
system of assembly routines which provide the special
arithmetic facilities embedded in Atlas Autocode (Clark
and Lunnon, 1966). These amount to a language within
a language and consist of declarations describing the
types and names of the data, and a single form of
imperative statement for processing the data. Examples
of declarations are

dc array H, K(1 : n)
mr(l) a,b,c

These declare and reserve space for two double-length
complex arrays H, K of dimensions (1 : n) and three
multi-length real numbers of length I (previously com-
puted) a,b,c.

In general declarations take the form

(scalar type)(array type ?>{(name list)

where the <array type), if not present, signifies scalar.
The scalar types are

At each stage the result is left in the “accumulator” (a
dynamically varying location). Evaluation reduces
therefore to a series of unary and binary operations in
which the value and type of the result depend on the
operator and the value and type of the operand (or
operands) involved. Thus if ¢z and v denote type and
value and « and B denote unary and binary, we have
(Ax), = o (A) (Aw), = a(A,A)
(AIBB)r = Bt(AtaBt) (ABB)V = BV(AV’BvaAt,Bt)

The functions o, «, B¢ B, are described in Brooker
and Clark (1966): they amount to a definition of the
language. For each combination of operator and
operand types the compiler calls in a specified routine
(although a single routine may deal with several com-
binations) to compile the appropriate instructions, either
an open sequence or a call for a run-time subroutine.
The mechanism by which the compiling routine is
selected will now be described.

The type of an operand is represented in the store of
the machine as follows

mode

| array type precision >
o of 1] of o of of o of 1] of of o of o of of o o 1 o o o oi
‘ IT H spare “ spare ———————>! 1 T 1\}<——spare-—>’
} _l-complexc —array (rectangular) ! —multiple m
l —bit pattern b scalar —double d
~real r —single s

sr (single length real) sc (single length complex)
dr (double length real) dc (double length complex)
mr (multi-length real) mc (multi-length complex)
sb (bit pattern)

The precision (s,d,m) and mode (r,c,b) are effectively
separate factors although they are not themselves recog-
nized delimiter symbols.

An arithmetic statement is an infix expression with
binary and right unary operators (i.e., placed on the
right of the operand they refer to). All operators have
uniform precedence, and the expression is processed
from left to right. For example

[a sqrt + b * [cchs 4+ (1)] + H(1)im . . .]

means: fetch a, take its square root, add b, multiply by
[c chs 4 (1)], add H(1), take the imaginary part, etc.

For each of the 3 components of the type, namely,
precision, mode, and array type there are 8 possibilities,
some of which are spare. The full type of an operand
is therefore given by a single bit in each of the 3 sections
of the word. The digits shown correspond to dc array
[The other components of the type, the dimensionality
of the array and the associated bound pairs, are treated
separately.]

An operator is represented internally as follows (in
octal digits)

| «~————————39 bits (operator)

| 0000000003600/ 00O0O0 |

+ 4 |<-spare—>|

’ —rCp
| —sqrt

|—log
'—exp

—>1 <~-9 bitS——->|

* Department of Computer Science, The University, Manchester, 13.
t Commonwealth Scholar, Department of Computer Science, The University, Manchester, 13.

20z 1Mdy 61 uo }sanb Aq /865.€/09/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Index directed compiler

each bit corresponding to one of 39 unary (or 39 binary)
operators. We always know whether it is a unary or
binary operator we are dealing with. The reason for
the 9 spare digits will become clear shortly.

A unary operation is described by a 72-bit pattern,
the code for the operand and the code for the operator,
3 half-words in all. The routine for dealing with a
unary is found by comparing this 72-bit pattern* with
an ordered table of 72-bit entries, each of which specifies,
by means of suitable bit pattern, a class of operations
and (in the 9 “‘spare” bits) a routine to deal with it. The
entry selected is the first one which has bits in the same
position as those of the unary code on hand (although
it may have other bits as well). Thus the entry (in octal
digits)

| operand |

operator(s) —| routine |

|10100040/0000000003600]410|

o1 1)
' | _scalar |_single —rcp
__complex —sqrt
—log
—exp

traps all applications of these operators on single-
length complex numbers, and calls in the routine R264
which is reproduced in Fig. 1. This, like all the routines,
is in symbolic machine language (ABL) but nevertheless
its meaning should be clear from the accompanying
notes.

A similar scheme involving a table of 96-bit patterns
is used for the binary operations.

The interpretation of multiple digits in the operator
section of a table entry is fairly clear: they mean “if
any of these operators are present...”. Multiple
digits in the operand section define a combination of
types. For example digits corresponding to single,
double, real, complex and scalar will trap the operands
sr, dr, sc and dc.

A system for adding entries to and deleting entries
from the table allows the facilities to be built up in a
piecemeal way. The easier cases (e.g., the one described)
can be provided fairly quickly; the more difficult cases
can be diverted into dummy routines which simply
monitor the fact that these facilities are not yet available.

Existing facilities can be made more efficient by intro-
ducing new routines to deal with special cases. All that
is necessary is to insert an entry to trap the particular
combination of operator/operands before the entry
which would otherwise catch them. (This is done auto-
matically by the system.)

Finally the operations not trapped by any of the entries
correspond to illegal situations (e.g., sb sin) and fall
through the bottom of the table, there to be monitored.

* Atlas does not permit us to compare 72-bit words in a single
operation and so we discriminate first on the 1st half word, and
when agreement is reached we proceed to match the 2nd and then
the 3rd half words. Similarly when scanning the *“binary” table
we discriminate in 4 stages.

61

R264 | sc unary
101 9 62 —7Al | fetch extracode
113 9 1 0 |and plant with
114 50 1 0 |address of operand
113 51 1 0-4 | (B62 = operator number)
1213 99 0 J1456u2 4 83u4 |plant “dump” extracode
113 9 1 1 | with address
114 54 1 1 | of result
113 55 1 1-4
124 1 0 2 |advance instr. pointer
121 60 58 0 | set type of result
121 56 54 0 | set pointer to
121 57 55 2 |end of ““accumulator”
121 -1 9 o0 | exit
1)1414 83 0 0 |rep (7)
1410 83 O 0 |sqrt (8)
1400 83 0 0 |log (9)
1402 8 0 0 |exp (10)
z

The significance of this particular class of operations is that they
can be implemented by extracode instructions. The function of
this routine is to select the appropriate extracode, insert the address
of the “accumulator” (which is held in the stack) and compile the
instruction. Not all routines are as simple as this of course, and
the writer must understand the strategy of the stack and the role
of the relevant index registers.

Fig. 1.—Routine R264

delimiter act,16
delimiter arccos,46
delimiter arcsin,45
delimiter arctan,47
delimiter arg,37
delimiter cos,43
delimiter chs,32
delimiter cvt,18
delimiter conj,54
delimiter dc,204
delimiter dr,203
delimiter exp,41
delimiter fracpt,34
delimiter intpt,33
delimiter int,35
delimiter im,52
delimiter log,40
delimiter load,31
delimiter mc,206
delimiter mr,205
delimiter mod,36
delimiter mdv,27
delimiter nl,50
delimiter norm,58
delimiter prt,48
delimiter rarray,208
delimiter rcp,38
delimiter re,51
delimiter rd,53
delimiter rcm,30
delimiter scalar,207
delimiter sb,200
delimiter sr,201
delimiter sc,202
delimiter sin,42
delimiter sqrt,39
delimiter sp,49
delimiter shift,19
delimiter to,15
delimiter tan,44
delimiter trp,60

Fig. 2.—Delimiters

20z 1Mdy 61 uo }sanb Aq /865.€/09/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Index directed compiler

Setting up the tables

The source language uses underlinedf ‘‘delimiter”
words to denote scalar types, array types, unary and
binary operators (except for the conventional
4+ —*/ 1 << > > = + * most of which are also
used by the host language). Each delimiter is associated
with an item number which serves as its internal repre-
sentation in the machine.

The system provides for up to 30 type delimiter words
and 39 operators of each kind with item numbers in the
ranges

{scalar type delimiter) or {array type delimiter) 200-229

{unary) 31-60, 239-247
{binary) 1-30, 230-238
The operators + — * /... take fixed item numbers

(as a result of their use in Atlas Autocode) but other-
wise they can be assigned arbitrarily.f This is done by a
statement of the form

delimiter (name) <{item number)

For example

delimiter sin, 42
delimiter sr, 201

allows sin and sr to be used as a unary operator and a
scalar type respectively.

After introducing a scalar type delimiter such as sr
the statement

type sr, ¥*40000040, 215

arranges for a routine R215 to be called in to deal with
all statements starting with sr. These will in fact take
the form

sr (name list)

*40000040 is the internal representation of the type in
octal form.

Similarly type rarray, *00040000, 302

arranges for a routine R302 to be called in as a sub-
routine during the processing of statements of the form
{scalar type) rarray (dimensional structure)> (name list>
{scalar type) may consist of more than just the scalar
type delimiter as e.g., in

mr (1) rarray A, B, C(1:n)
I

scalar array

type type

To write routines such as R215, R302 requires of course
a knowledge of the structure of property lists and the
strategy of storage reservations.

1 Printed in bold type in this paper.

I The actual item number is irrelevant but if two or more names
are given the same item number then they will be equivalent (a
fact which is sometimes useful). The system will, on request (see
Monitoring), print a list of currently assigned item numbers.
Delimiters such as delimiter, type, unary, binary and certain others
are built-in to the system.

62

Finally, operations are introduced by listing the
operators and operand involved. For example

unary (rcp, sqrt, log, exp) (sc, scalar) (264)

defines the table entry discussed earlier.

Note: replacing sc by sr, sc would trap only sr and sc
operands but replacing sc by sr, dc would result in the
same bit pattern as sr, sc, dr, dc and would in fact trap
all these types. In other words it is as if we had written
(s, r, d, ¢), but single character delimiters are not per-
mitted.

Making changes to the tables

To facilitate changes in the system unary, binary,
and delimiter entries may be removed from their
respective tables. For example

delete delimiter sin, 42
will remove sin from the delimiter table, and
delete unary (sqrt, rcp, log, exp) (sc, scalar) (264)

will remove from the unary table the entry which corre-
sponds to the listed operators/operands. Entries in the
type table are located according to their item numbers,
and thus if a new type meaning is given to an existing
delimiter it simply cancels the previous definition.

Monitoring

Monitoring statements exist which allow one to
obtain an up to date documentation of the facilities
implemented in a particular version of the compiler.
Thus

monitor unary
monitor binary
monitor type
monitor delimiter

will print out the state of the relevant tables.

Figs. 2, 3, 4, 5 show how the system has grown in
practice. Fig. 2 introduces the delimiters, Fig. 3 the
type statements, Fig. 4 the unary operations, and Fig. 5
the binary operations. Together they provide an “index”
to the system which is particularly useful in locating
faults. The monitoring statements enable us to keep
up to date. Moreover the users can to some extent
keep abreast of developments without waiting for
Computer Service bulletins.

Limitations of the type description

It is interesting to examine the limitations to operand
type description imposed by the simple system we have
adopted, which provides 8 x 8 x 8 alternatives. Firstly
all “structures” must be homogeneous, that is the real
and imaginary parts of a complex number, the elements
of an array, etc., must all be of the same individual type.
The designation of the 3 levels as precision, mode, array
type is arbitrary. Thus for example suppose we wish to
introduce interval arithmetic. It would be convenient

20z 1Mdy 61 uo }sanb Aq /865.€/09/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

Index directed compiler

type sb, *20000040, 215
type sr, *40000040, 215
type sc, *10000040, 215
type dr, *40000020, 215
type dc, *10000020, 215
type mr, *40000010, 216
type mc, *10000010, 216

type rarray, *00040000, 34
type scalar, *00100000, 215

Fig. 3.—The type statements

to describe interval as a mode in which case the com-
ponents (the limits of the interval) could be of any
designated precision. Alternatively if we fixed the
precision of its components (and there are good reasons
for limiting it, say, to multiprecision) an interval could
be introduced at the precision level, e.g., mi r (1). Now
the complex arithmetic routines are so arranged that the
real and imaginary parts can be of any precision
(provided they are both the same) so that once the
routines for interval arithmetic are written, complex
interval arithmetic (should it ever be needed) is auto-
matically available. The same principles would apply
if we were to introduce other modes. For example
defining polynomial as a mode would enable the coeffi-
cients to be of any precision (including mi). They
could not however be complex (¢). This would only be
possible if polynomial were an “array’, in which case
we would forgo the possibility of handling genuine
arrays of polynomials.

The semantics

We have already mentioned that the routines which
make up the system are written in assembly languages
(i.e., machine code). This is for reasons of space
economy and efficiency (particularly for the more
primitive types). It is almost certainly possible to write
some of the routines in a higher level language, probably
ABC itself, and this is being looked into.

Acknowledgement

The authors wish to acknowledge many useful con-
versations with Mr. W. F. Lunnon of the Department
of Computer Science.

References

unary
unary
unary
unary
unary

unary

unary

unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary
unary

binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary

binary
binary

(sp,nl) (sb,sr,sc,dr,dc,mr,mc,scalar,rarray) (260)
(prt,rd) (dr,mr,scalar) (259)

(prt,rd) (sc,dc,mc,scalar) (245)

(re,im) (sr,sc,dr,dc,mr,mc,scalar) (258)
(load,chs,intpt,fracpt,int,mod,arg,rcp, ¢
sqrt,log,exp,sin,cos,tan,arcsin,arccos, ¢
arctan,prt,rd) (sr,scalar) (262)
(load,chs,intpt,fracpt,int,mod,arg,rcp, ¢
sqrt,log,exp,sin,cos,tan,arcsin,arccos, ¢
arctan) (dr,mr,scalar) (263)
(load,chs,intpt,fracpt,int,mod,arg,rcp, ¢
sqrt,log,exp,sin,cos,tan,conj) (sc,scalar) (264)
(load,chs) (dc,mc,scalar) (237)

(mod) (dc,mc,scalar) (238)

(arg) (dc,mc,scalar) (239)

(rcp) (de,me,scalar) (240)

(sqrt) (dc,mc,scalar) (241)

(log) (dc,mc,scalar) (242)

(exp) (dc,me,scalar) (243)

(sin) (dc,mc,scalar) (231)

(cos) (dc,mc,scalar) (232)

(tan) (dc,mc,scalar) (233)

(conj) (de,me,scalar) (250)

(norm) (sr,sc,dr,dc,mr,mc,rarray) (247)
(trp) (sr,sc,dr,dc,mr,mc,rarray) (249)
(load,chs,intpt,fracpt,int,mod,arg,rcp, ¢
sqrt,log,exp,sin,cos,tan,arcsin,arccos, ¢
arctan,prt,rd,conj) (sb,sr,sc,dr,dc,mr, ¢
mc,rarray) (265)

Fig. 4.—The unary operations

(+,—,*,/) (sr,dr,mr,scalar) (sr,dr,mr,scalar) (203)

(<,> <,>,=, %) (sr,dr,mr,scalar) (sr,dr,mr,scalar) (214)
(to) (sr,dr,mr,scalar) (sr,dr,mr,scalar) (223)

(act) (sr,dr,mr,scalar) (sr,dr,mr,scalar) (234)

(cvt) (sr,dr,mr,scalar) (sr,dr,mr,scalar) (228)

(to,cvt) (sr,dr,mr,scalar) (sb,scalar) (253)

(to,cvt) (sh,scalar) (sr,dr,mr,scalar) (254)

(shift) (sb,scalar) (sr,dr,mr,scalar) (255)

(+,—,and,or, s to,cvt) (sb,scalar) (sh,scalar) (256)
(+,—,*,/)) (sr,dr,mr,scalar) (sc,dc,mc,scalar) (221)

(to,cvt) (sr,scalar) (sc,scalar) (225)

(+,—,*)) (sc,dc,me,scalar) (sr,dr,mr,scalar) (220)
(+,—,%*,/) (sc,scalar) (sc,scalar) (213)

(to,cvt) (sc,scalar) (sc,scalar) (224)

(to) (sr,dr,mr,scalar) (sc,dc,mc,scalar) (227)

(cvt) (sr,dr,mr,scalar) (sc,dc,mc,scalar) (230)

(+,—,*) (sc,dc,mc,scalar) (sc,dc,mc,scalar) (222)

(/) (sc,dc,me,scalar) (sc,dc,mc,scalar) (212)

(to) (sc,dc,mc,scalar) (sc,dc,mc,scalar) (226)

(cvt) (sc,dc,mce,scalar) (sc,dc,mc,scalar) (229)

(rcm) (sr,sc,dr,dc,mr,mc,rarray) (sr,sc,dr,dc,mr, ¢
mc,rarray) (246)

(mdyv) (sr,sc,dr,dc,mr,mc,rarray) (sr,sc,dr,dc,mr, ¢
mc,rarray) (251)

(+,—.%/1,<,>,<,>,=, + ,and,or, ¥ ,to,act,cvt,shift) ¢
(sb,sr,sc,dr,dc,mr,mc,scalar,rarray) (sb,sr,sc, c
dr,dc,mr,mc,scalar,rarray) (257)

Fig. 5.—The binary operations

BROOKER, R. A., ROHL, J. S., and CLARK, S. R. (1966). “The main features of Atlas Autocode”, The Computer Journal, Vol. 8,

CLARK, S. R., and LunNoN, W. F. (1966). ‘“Multiple precision arithmetic in Atlas Autocode”, Letter to The Computer Journal,

p. 303.
Vol. 9, p. 174.
BroOKER, R. A., and CLARK, S. R. (1966).
University.

“Notes on the Special Arithmetic Statements in Compiler ABC”’, Manchester

BROOKER, R. A. (1964). “A Programming package for generalized arithmetic”’, Comm. A.C.M., Vol. 7, p. 119.

63

20z 1Mdy 61 uo }sanb Aq /865.€/09/1/01/2101e/|ulWod/Ww oo dno-ojwapese//:sdiy wolj papeojumo(

