Multiplicative congruential pseudo-random number generators

By D. Y. Downham and F. D. K. Roberts*

Congruential random number generators are discussed. Such generators are both computer and
compiler dependent: this is discussed in relation to high level languages on a binary machine.
One of the statistical tests, which has only occasionally been used, is shown to be more “‘sensitive’’

than the other tests.

1. Introduction

In recent years, the advent of electronic computers has
made it possible to use Monte Carlo and simulation
techniques to solve many problems for which analytic
or numerical solutions have been difficult or even
impossible to find. These techniques require sequences
of random numbers from various probability distri-
butions to be readily available. Various methods (see,
for example, Tocher, 1963) have been evolved for
obtaining such sequences from a uniform random
sequence in (0, 1). Such a sequence of uniform random
numbers, which is generated within a computer in a
deterministic manner, is often referred to as a psuedo-
random number sequence.
The most frequently used generators take the form

Xip1=kx; +cmod(m),i=0,1,2,... €))

where x,, k, ¢, m are integers, x4, k, ¢ <m. The
sequence {x;/m} is then taken to be the uniform random
number sequence. Clearly the sequence must repeat
itself at some stage but by suitable choice of k, ¢, m, x,,
a sufficiently long cycle can be generated. If ¢ = 0, the
generator is called multiplicative, otherwise it is said to
be mixed. On binary computers, the modulus m is
usually taken in the form m = 2V, since the congruence
can be more speedily evaluated, a direct division not
being necessary.

For mixed generators with m = 2N, necessary and
sufficient conditions for a full length cycle are
k = 1 mod(4), ¢ odd, x, arbitrary, 0 < xo << 2N — 1.
With mixed generators of this type, k is often of the form
k=2+1,(a>2) so that multiplication can be
effected merely by a shift and add. The results of Hull
and Dobell (1964), show that the statistical behaviour
of this type of generator must be viewed with suspicion
although certain values of k do appear satisfactory.

The maximum length cycle for multiplicative
generators, (i.e. ¢ = 0), when m = 2V, is 2¥=2 which is
attained when k= + 3mod(8) and x, is odd,
1 < Xo < 2§ — 1.

Most of the literature already published (see, for
example, Hull and Dobell (1964), Kuehn (1961), Pike
and Hill (1965), Rotenberg (1960)) has dealt with the
modulus m = 2V, If access can easily be gained to the

binary pattern within the machine, these generators will
operate more speedily. However, we have been pro-
grammingin ALGOL on KDF9 using the Kidsgrove
compiler, and little advantage can be gained by using
binary orientated parameters (see Section 4).

In this paper, we consider multiplicative generators
of the type

Xit1 = kxi mOd(p)’ i=0, 1, 2"-'

where the modulus p is a large prime and the multiplier
k is a primitive root mod(p). This generates a full cycle
which is a permutation of the integers 1,2, ..., p — 1.

Many generators of this type were subjected to the
statistical tests listed in Section 3, and a few of the results
are included in Table 1.

2. Number Theory
Consider the generator
X;4+1 = kx; mod(p). (@)
Then
x,- = kixO mOd(p).

We will denote the highest common factor of a and b by
hcf(a, b). The length of the cycle is given by the
minimum # satisfying

k* = 1 mod(p). 3)

The Fermat-Euler theorem states that if hcf (k, m) = 1
then k*™ = 1 mod(m) where ¢(m) is the number of
integers less than and prime to m. In our case,
m = p = prime. Hence ¢(p) = p — 1. However ¢(p)
is not necessarily the smallest integer satisfying (3). It
has been shown (see Tocher, 1963) that the smallest
value of » satisfying (3) must divide ¢(p). If the smallest
value of n satisfying (3) is ¢(p) = p — 1, then k is called
a primitive root mod(p) and the cycle of length p — 1
can be attained.

Hardy and Wright (1960), have shown that primitive
roots exist for every prime p and that the number of
primitive roots is equal to ¢(p — 1). There is no general
technique for finding a primitive root for a given prime.
Usually a process of trial and error is used to find a
small primitive root g. The remaining primitive roots

* Department of Computational and Statistical Science, The University, Liverpool 3.

202 Iudy 01 uo 1senb Aq $209.€/v72/1/01L/3101e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Pseudo-random numbers

Table 1*
Results of tests on 6 generators using a prime modulus p, and a primitive root &

k = 8192 k = 8192 k = 32768 k = 54751 k=8 k=32
p = 67101323 p = 67099547 | p = 16775723 p = 99707 p = 67100963 p = 79997817
Test
run run run run run run

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Uniformity 50 92 39| 34 23 82| 82 30 43 51 9 13| 75 15 28 38 35 76
Serial lag 1 18 54 90| 61 12 46|39 73 14, 49 12 22 € € €| 27 €13
Serial lag 2 7-9 82 60|70 54 94| 95 56 36 29 20 25| 24 24 33 40 70 53
Serial lag 3 84 98 94| 20 82 55| 59 23 99 € € e| 84 52 96 63 80 92
Serial lag 4 25 87 44| 8 22 57| 37 60 50| 0-3 21 54| 96 37 59 21 7-8 51
Serial lag 5 22 93 94| 2588 8| 31 47 96 27 31 43| 64 38 46 25 34 88
Serial lag 6 38 95 47| 64 19 20| 9-8 84 85 € € e| 42 93 46 50 12 99
d? test 42 79 12| 97 45 47| 91 3-4 29 20 0-04 0-27 | 16 9-9 2-8 87 33 22
Sum of 2 20 8996 94 74 62| 36 38 55 88 96 19| 38 95 33 92 74 36
Sum of 3 76 58 89| 69 30 12| 14 95 75 56 66 19| 2636 37| 7-0 549-6
Sum of 4 70 30 7| 22 8 93| 8 9-13-9|0-09 € e| 36 25 2-1 43 4-4 94
Sum of 5 34 92 25|3-6 43 18| 54 53 89 € € €| 1-:02-70-8 78 26 15
Runs/median 23 13 54| 59 2:9 35| 66 0-89 32 27 8 93| 75 33 92 92 67 32
Runs up/down | 48 67 98 | 93 19 44| 90 82 60 € € € € € €030 0-26 1-5
Poker test 38 98 58| 43 19 60| 84 94 67 € 0-03 €| 34 32 78 63 6163

|

* The tabulated value is the probability, expressed as a percentage, that the appropriate Chi-square variate will exceed the computed

value. Where € occurs, it means the probability is less than 0-01 per cent.

not independent.

may then be generated by

k = gemod(p), hefla,p — 1) = 1.

However, sufficient conditions have been established for
2 to be a primitive root mod(p), namely:

(1) (p—1)/2prime
(2) p=3mod().

The proof of this is given by Roberts (1966). For such
a prime p, an appropriate primitive root k can be found
by k = 22 mod(p), hef (a,p — 1) = 1.

Studies of the serial correlation between successive
pseudo-random numbers by Coveyou (1960) and Green-
berger (1961) have shown that small values of k produce
unsatisfactory generators, and most of the generators we
tested used a value of k = 4/p. Larger values of k can
produce good results, but this is not always the case.
p = 11 satisfies the above conditions, hence 2 is a primi-
tive root mod(11)

n 0123456 728 910
21 2 48 5109 7 3 61

If p = 67099547, then the conditions are satisfied, and
so 2 is a primitive root. An appropriate value of k is
213 = 8192, Hence the generator x;,;= 8192x;
mod(67099547) generates a full cycle, and the sequence
{x:/67099547} can then be used as the uniform random
number sequence. This generator has good statistical
properties and is quite suitable for use on KDF9.

75

It should be noted that the y2 probabilities for a given run are

3. Statistical tests

Eight tests were used, each test being applied to the
same sequence, and hence the results are not independent.
Each generator was tested three times, the sequences
being generated by different starting values, x,. We give
here a summary of six of the tests.

Test 1—Uniformity. The unit interval was divided into
100 equal intervals. For each run, a sequence of 2000
numbers was used. The occurrences in each interval
were counted and the x? statistic computed.

Test 2—Serial. The unit square was divided into 100
equal cells and a sequence of 2006 numbers was used.
Each pair of random numbers (u;, u;.,), i = 1(1)2000,
I = 1(1)6 was taken as the co-ordinates of a point in
the unit square. The frequencies f;; in cell (7, j) were
computed. Good (1953) has shown that the statistic

Sz—i 2 (f,, 20)2 — 200 2 (h; — 200)2
10

where h; = Z fij» has asymptotically a y? distribution

on 90 degrees of freedom. We computed this statistic
for lags I = 1(1)6.

Test 3—Gruenbergers d? test. A sequence of 10,000
numbers was divided into 2,500 sets of 4. Each set of 4
was used to determine the co-ordinates of 2 points in the
unit square and d2, the square of the distance between
them was computed. The range of d? is (0,2). This

202 Iudy 01 uo 1senb Aq $209.€/v72/1/01L/3101e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Pseudo-random numbers

was divided into 15 intervals 0(0-1) 1-4(0-6) 2-0, and
the occurrences in each cell of the 2,500 values of d2
were computed. The observed frequencies were tested
against the expected values in each cell as evaluated by
Gruenberger and Mark (1951), and the x? statistic
computed.

Test 4—Sum of n(n = 2, 3, 4, 5). We tested to see if
Fu; +u, +...u,) was uniform using 100 equal
intervals, where F is the distribution function of the
sum of n random variables. Sequences of length n x 1000
were used for n = 2, 3, 4, 5.
Test 5—Runs above and below the median. Herrman
(1961) has evaluated the expected number of runs of
length r and of length r or greater for a sequence of n
random numbers, not differentiating between runs above
and below the median. We used this test with sequences
of length 10,000 counting the actual number of runs of
lengths 1, 2, ..., 9 and 10 or greater and evaluating the
x? statistic.
Test 6—Runs up and down. 1If a generator failed any
other test, then it also failed this test. In this sense this
test is the most sensitive. One can form sequences of
numbers which would satisfy this test and fail other
tests, but amongst the forty generators we tested, such a
sequence did not occur. Since this test has only occa-
sionally been applied, we give a fuller account of it.

A subsequence

Xim s Xpp Xty Xip r 1, Xig p Xy 11 < i< n—r—1)

of r 4 3 consecutive numbers in a sequence of » random

numbers is said to form an inside run “up” of length r if
Xio1 > X <Xip1 <.ooo < Xijgp > Xigpyge

An end run of length r is given by either of the two
conditions

X <X <x3...<X >x..(1<r<n—2
Xper 1 DXy, < Xp_,1 <...<x,(I<r<n—2).
Runs down are defined by a reversal of the inequality
signs.

Herrman (1961) has shown that the expected number

of runs of length r, not differentiating between runs up
and runs down, is given by

_ (P +3r+Dn—(?+3r—r—4
E(r)—zx{ r +3)! }

The expected number of runs of length r or greater is
approximately given by

o r+Dn—(@*+r—1
E(r)—2><{) .
We used sequences of length 10,000 and counted the
actual number of runs of length 1, 2, . . ., 5 and 6 or

greater. These were compared with the expected values
and the x? statistic computed.

Test T—Poker test. The poker test is used to examine
the distribution of sets of five decimal digits. For each
run, a sequence of 10,000 numbers was divided into 2,000

76

separate sets of five, the first digit of each number being
used. The probabilities for the different arrangements
of the digits are tabulated in Herrman (1961).

A test to examine the independence of the first three
decimal digits in each number was also used and since
it was satisfied even when many other tests were not, we
have not included it in the table.

4. Computer considerations

Usually simulation programs are written in a high
level language. Hence, in choosing the generators to be
used in any problem, the peculiarities of the machine
and compiler must be borne in mind. We have been
programming in ALGOL on KDF9 using the Kidsgrove
compiler. KDF9 is a 48-bit word machine: the bit
patterns are not available to programmers using the
ALGOL compiler unless special procedures are written
in basic machine code and incorporated into ALGOL
programs. Thus many of the advantages of using
powers of 2 and multiplying by shifting are lost.

We have tried four different approaches:

(a) The algorithm of Pike and Hill (1965) was con-
sidered. This was written as an ALGOL pro-
cedure and used a value of m = 226, This
generator was rejected because we could take no
advantage of the binary form and the cycle is
only one quarter the possible cycle length.

(b) Using basic machine code we were able to take
advantage of the binary modulus. This proved
unsatisfactory because the machine code had to
be written as a procedure code body, and the
access time to the procedure was prohibitive.

(c) We generated a full cycle using a prime modulus
inserting in the program the three ALGOL
instructions.

x:=k X x;

x:=x—(x+p) Xp;

random:= x/p;
where x, k, p are integers and random is a real
variable. No time was wasted entering a procedure
and the method proved three times faster than
(a) and (b).

(d) Using the mixed generator
X 11 = (2° 4+ Dx; + 29741096258473 mod(247)
suggested by Kuehn (1961), we generated an array
of random numbers in a procedure code body.
Thus we could take advantage of the binary para-
meters, and the procedure access time per random
number was reduced. This generator satisfied the
statistical tests but was only marginally faster
than (¢). Much of the time gained by using binary
parameters was lost in locating array elements.

5. Results and conclusions

Table 1 gives the probability, expressed as a per-
centage, that a y? variate will exceed the observed value.
The first 3 generators appear quite satisfactory and are
suitable for use on KDF9. The fourth generator uses a

202 Iudy 01 uo 1senb Aq $209.€/v72/1/01L/3101e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

Pseudo-random numbers

multiplier & > 4/p, which satisfies the equation
k3 = 2 mod(p) where the modulus p = 99707. Hence
we would expect this generator to fail the serial test with
lags 3 and 6. Other large multipliers have also been
tested and most of them appeared satisfactory. The
last 2 generators in Table 1 use a small multiplier &,
and as will be seen from the results of the serial test
with lag 1 and Test 6—Runs up and down, these

References

generators cannot be considered as acceptable. Test 6
was found to be a very useful and sensitive test and it is
surprising that it has so rarely been used.

Acknowledgement

The second named author wishes to express his thanks
to the Science Research Council for their financial
support during the preparation of this paper.

Coveyou, R. R. (1960). “Serial Correlation in the generation of pseudo-random numbers”, J. Assoc. Comp. Mach., Vol. 7, p. 72.
Goop, I. J. (1953). “The serial test for sampling numbers and other tests for randomness’’, Proc. Camb. Phil. Soc., Vol. 49, p. 276.

GREENBERGER, M. (1961).
Comp., Vol. 15, p. 383.

“An a priori determination of serial correlation in computer generated random numbers”, Math.

GRUENBERGER, F., and MARK, A. M. “The d2 test of random digits”’, Math. Tables Other Aids Comp., Vol. 5, p. 109.

HArpY, G. H., and WRIGHT, E. M. (1960). The Theory of Numbers, 4th ed. Oxford: Clarendon Press.

HEerrMAN, R. G. (1961). *The statistical evaluation of random number generating sequences for digital computers”’, Washington
D.C.: Office of Technical Services, U.S. Dept. of Commerce, APEX-635.

Hurr, T. E., and DoBELL, A. R. (1964). ‘“Mixed congruential random number generators for binary machines’, J. Assoc. Comp.

Mach., Vol. 11, p. 31.

Kuenn, H. G. (1961). “A 48-bit pseudo-random number generator”’, Comm. A.C.M., Vol. 8, p. 350.

Pikg, M. C., and HiLr, 1. D. (1965). ‘“Pseudo-Random Numbers”’, Comm. A.C.M., Vol. 8, p. 605.

RoBERTS, F. D. K. (1966). ‘“Pseudo-random number generators for digital computers”, M.Sc. thesis, Liverpool.
ROTENBERG, A. (1960). ‘A new pseudo-random number generator”, J. Assoc. Comp. Mach., Vol. 7, p. 75.
TocHER, K. D. (1963). The Art of Simulation, London: English Universities Press.

Book Review

The Matrix Analysis of Vibration, by R. E. D. Bishop, G. M. L.
Gladwell and S. Michaelson, 1965; 404 pages. (London:
Cambridge University Press, 100s.)

The material in this book may be divided into two main parts.
The first part gives an elementary exposition of matrix theory
and its use in the formulation of vibrational problems. The
second part deals with the solution of the fundamental prob-
lems of matrix algebra by computational methods.

In Chapter 1 the matrix concept is introduced, and matrix
addition, multiplication and inversion and the determinant of
asquare matrix are defined. Chapter 2 discusses the vibration
of a conservative system with a finite number of degrees of
freedom while Chapter 3 covers the theory of linear equations
and discusses such problems as rank and linear dependence.
Chapter 4 takes up the theory of free vibration again, and
covers change of co-ordinates and the effect of constraints,
and gives a more rigorous treatment of natural frequencies
and principal modes. In Chapter 5 the problem of damped
systems is taken up, starting with a simple one-dimensional
model and continuing with systems with many degrees of
freedom. Chapter 6, easily the longest, concludes the first
part of the book with a very comprehensive treatment of
methods for reducing continuous systems to approximating
systems having a finite number of degrees of freedom.

The second half consists of three chapters. Chapter 7
describes the solution of linear equations by a number of
variations of triangular decomposition and includes a dis-
cussion of the effect of rounding errors. Chapters 8 and 9
deal with the solution of the algebraic eigenvalue problem,
the first covering iterative methods and the second covering
direct methods. Included in the last chapter is Householder’s

77

reduction of a symmetric matrix to tridiagonal form, and the
calculation of the eigenvalues of the latter by the Sturm
sequence methods and of the eigenvectors by inverse iteration.
For unsymmetric matrices, Lanczos’ method for the reduction
to tridiagonal form is described, and the use of Muller’s
method for calculating the eigenvalues is discussed.

The book contains a very large amount of information and
will undoubtedly be of great value to engineers who wish to
make a serious study of vibrational problems. It includes a
valuable collection of exercises. The main weaknesses are
such as might be expected in a book written by three different
authors with somewhat different backgrounds. The funda-
mental mathematical problem is the determination of values
of A for which Ax = ABx has non-trivial solutions. This
problem is treated several times during the course of the book
by arguments of varying sophistication. It is possible that
engineers prefer this piecemeal approach but I am not
convinced of its effectiveness. Surely it would have been
simpler to deal once and for all with the relevant canonical
forms associated with A-AB? 1 found the second half of the
book much the more satisfying though unfortunately Chapters
8 and 9 were written at a time when new techniques for
solving the eigenvalue problem were still advancing rapidly.
At the present moment most unsymmetric matrix problems
are solved either by reduction to Hessenberg form followed by
the QR algorithm or Parlett’s version of Laguerre’s method,
or by the application of Eberlein’s method; but none of these
techniques is mentioned.

The standard of production of the book is remarkably high
and the price is very reasonable for such a handsome volume.

J. H. WILKINSON

202 Iudy 01 uo 1senb Aq $209.€/v72/1/01L/3101e/|ulwoo/wod dnoolwspede//:sdiy wolj pepeojumo(d

