Solution of systems of non-linear equations by parameter variation

By F. H. Deist and L. Sefor*

This paper describes a novel method for solving systems of non-linear equations. Conceptually
the procedure may be described as follows. The equations are modified to a form that can be
handled analytically by introducing a set of parameters. These simple equations are then varied
to their original form whilst simultaneously tracing the roots. Formal background, computational
details and applications are considered.

1. Introduction

The problem of finding the solutions of non-linear
equations is an important one occurring frequently in
diverse fields of study. The approach discussed in this
paper was originally developed with the aim of solving
systems of transcendental equations where it was
successfully employed. It has been indicated to the
authors that the idea underlying the method was first
described by Davidenko (1953).

The basis of the method is discussed in Section 2.
Section 3 deals with uniqueness properties and contains
some remarks on the selection of suitable parameters.
Variations of the method are considered in Section 4.
Based on these a simple computational technique is
proposed. Practical details of the procedure along with
numerical examples are presented in Section 5.

2. Basis of method
Let

FX) ={f{(x)} =0, (np=12,...n) @.1)

be the system of non-linear equations to be solved. We
introduce a set of parameters a(s=1,2...k;k
arbitrary) into equations (2.1), with the property that
there is a particular set of values—a/ say—for which
F(X) = F(X, af). As the a, take on different values, the
zeros of

F(X,a) =0 (2.2)

will move in X-space.

A suitable choice of the parameters in conjunction
with a particular set of values—a? say—will allow one
to find analytically m solutions of (2.2), X(j = 1,2...m)
say.

Starting with these parameter values and one of the m
initial vectors X7, the system of equations (2.2) is changed
to its original form by a continuous variation of the a,
to their final values @/. Simultaneous tracing of X, such
that (2.2) is always satisfied during the deformation,
will—subject to conditions discussed below—yield a
unique zero of (2.1). Repeating this procedure for all
X9 will determine m zeros of the original set of
equations.

The above deformation may formally be described as
follows: Differentiating (2.2) w.r.t. one of the parameters
a,, one has:

d d
G.DZ(X)—{—DTIS(F)::O 2.3)
where
of, _
G:{bxp} r,p=12...n).
. d
Solving for oYy X):

d D
Sa, 0 =—G"L (B, (=12...0. 4

It is seen that the task of tracing X from X¢ to X/
amounts to the solution of k systems of first-order
differential equations in the interval a° <a, <af
subject to initial conditions X9 at a?.

Provided that certain conditions, to be discussed in
the next section, are satisfied, each X}’( j=1,2...m)
will result in a unique distinct solution of the differential
equations, which is independent of the path of integra-
tion in a,-space.

3. Remarks on uniqueness of solutions and selection of
parameters

To establish the uniqueness conditions referred to in
Section 2, (2.3) is differentiated w.r.t. a,, say. One
obtains:
of, %,
x, " da,da;

_ ¥, dx, dx, %, x,
— \dx,dx, da, da, ' dadx, da
2 d 2

S 2 I+ ). G.1)

dx,da, da, ' da,da,

+

Restricting interest to functions f,, which are twice
differentiable w.r.t. the x, as well as the parameters a;,
it is seen from (3.1) that, if the m solution sheets in
(X, a,)-space, generated by varying the path of integra-
tion in a,-space and identified by the m distinct initial
vectors X)(j=1,2...m), are free of singularities,
i.e. |G| # 0, m unique solutions that are independent of
the path of integration, will result. Extending the picture
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Non-linear equations

xP
da,
of the form %) and/or contain singularities that leave
the sheets single-valued within the region of interest, m
starting vectors will still result in 7 unique solutions, if
nonsingular paths of integration connecting the m
starting and corresponding end points can be found.
From what has been said, it is evident that in general
there can be no formal way of introducing the para-
meters. The success of the method depends entirely on
the ingenuity of the user. However, when dealing with
a practical system, it is frequently feasible to find special
case solutions, when certain system parameters take on
particular values. If it is further known that the system
depends continuously on these parameters, they will
constitute the natural choice for the method. (See
Section 5 (b) (ii).)

to solution sheets that intersect (i.e. some of the are

4. Remarks on computational procedures

When implementing the method on a digital machine,
we require algorithms, which will follow the zeros as
the system of equations undergoes stepped deformations.

Differential equation approach

The first approach is of course suggested by equations
(2.4) and puts at our disposal the host of algorithms
which have been devised for the solution of systems of
first-order differential equations. The Jacobian matrix
must be available.

Repetitive local iteration procedures

A distinct alternative approach utilizes any of the
available iteration methods for the solution of equations
in tracing a zero from the rth to the (r + 1)th deformed
system of equations. Clearly the deformation step size
must be suited to the radius of convergence of the
technique employed, which also determines the order of
derivatives required.

Mixed method

Assessing these two methods with a view to further
alternatives, it is evident that the differential equation
approach does not utilize the information available in
the form of equations (2.2), which must be satisfied
everywhere along the path of integration. The require-
ments on the step size can be relaxed, if the integration
is followed by or intermixed with local iteration runs.
These do recognize equations (2.2) and eliminate the
errors introduced by the preceding integration steps.

The difficulty is to strike an efficient compromise
between step size and the number of integration steps
between iteration runs. The two basic methods mark
the extremes of possible combinations.

To overcome this dilemma, one would like an
algorithm which embodies the properties of integration
and local iteration methods. With regard to the latter,
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it is evident that most available techniques are un-
necessarily elaborate. All we require is a method, which
converges rapidly in the close vicinity of a zero.

If we restrict ourselves to functions whose Jacobian
matrix is available, the obvious choice is the generalized
Newton-Raphson method, defined as follows:

AXi = —(Gi)~1.Fi @.1a)
X+l = Xi + AX'. (4.15)

The quantity S; = +/[(AX)TAX?] can serve as a
measure of convergence. (i is the iteration index.)

Formally the above algorithm corresponds to the
second basic approach. However, we shall show that
the first step in every iteration series is like an integration
step of the differential equation approach.

Consider equations (2.4) subjected to an integration
step w.r.t. one of the parameters, a; say.

Then

P
AX = — G 1.(Aa,. . (F)). 4.2)

Let this correspond to the step from the rth to the
(r + th zero. Now, F =0 at the rth zero. When
evaluated at the same point after deforming the system
to its (r -+ 1)th state, let F = F°. Then by definition of

)
sa. )
)
— (FY=F%— 0 =F°
Mg 5 (F)=F —0=F".

Hence (4.2) takes the form
AX= —G'.F 4.3)

where F is evaluated at the rth zero in the (r + I)th
equacions.

A numerical integration procedure evaluating G in the
same manner, could be employed and would of course
amount to proper integration in the limit as Aa;— 0.
On the other hand, comparing (4.3) and (4.1a) we see
that the former is equivalent to the first step of the
iteration process defined by the latter. This technique
has been used on a variety of problems and seems to
constitute the best compromise for the mixed method.

5. Computational procedure

(a) Programming details

In all examples the computation was carried out on an
IBM 1620 Model II computer using FORTRAN II.
Both the differential equation approach and the mixed
method have been employed. For the former, we found
it convenient to use the Runge-Kutta method (Ralston
and Wilf, 1960), because the parameter increment could
be easily modified to ensure a reasonable rate of con-
vergence. However, the latter was found to be more
efficient in running time and programming effort for all
cases tested, so, in Fig. 1, we present a flow chart of the
mixed method program.
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Description of flow chart

Box 1

The following quantities are defined for use in the
program:

A, Parameter vector, initialized to)
starting values

AA, Parameter increment vector, ini-r r=1,2... K
tialized to starting values

A,  Final value of parameter vector

X;  Unknown vector, initialized to
starting value

AX; Unknown increment vector

M Maximum number of iterations
allowed before adjusting A4,

r Parameter count set equal to one

Box 2

Values of X and A, are saved for recalculation with
new AA,, if convergence rate is not satisfactory. (See
Box 9.)

li=1,2...N
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1
ENTRY InimiaLse
2 3
[ Save X,A- TIs R--Ar? No V¥ A-=Ar+AR Ts A->Ac 7 H’g m=1,50=UL L
Yes Yes
i
| L No J1s rak 7 XE2 — SIEXIT Ar = Ar
4 5
>4 Conrure F,G AX=G'F X=X+AX SN=/axTnx
A
L 6 7 8 9
Is SN<LL? FNe———ITc SN»CFso7 Is m=M 7jES > AAF = AR 12 Restote X A
Yes No T
mem+1 pe———1S0=SN
10
Is me2 PP s an..2.4A.
No
Fig. 1. Flow chart for mixed method

Note that in the absence of a suitable criterion we have
quite arbitrarily chosen to make a full change in 4,
before altering A4,, ;. Not having attempted any other
scheme we cannot comment on relative merits.

Box 3

The iteration counter m is set to one and the quantity
SO is set to an arbitrary upper limit UL to ensure that
the initial AX does not run away.
Box 4

The function vector F and Jacobian matrix G are
evaluated using the current values of X and 4. An
emergency exit is provided for in the event of G becoming
singular.
Box 5

The quantity SN which is the absolute distance from
the zero of the current system is computed.
Box 6

If the absolute distance from the zero is less than an
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arbitrary lower limit, control is transferred to Box 10.
If not, control is transferred to Box 7.

Box 7

A test is made for satisfactory convergence where CF
is an arbitrary convergence factor 0 < CF < 1. If
convergence is satisfactory, control is transferred to
Box 8. If not, the parameter increment A4, is halved
and control is transferred to Box 9.

Box 8

The iteration count m is tested to ensure that the limit
M has not been exceeded. If m = M, AA, is halved
and control transferred to Box 9. If m < M, SO is set
equal to SN, the iteration count is incremented and
control is transferred to Box 4.

Box 9

The saved values of X and A, are restored and the
computation proceeds with a new, smaller A4,.

Box 10

If the iteration count is one or two it can reasonably
be expected that the system is well behaved and the
increment AA, is doubled. This ensures a rapid
deformation to the original set of equations. Control is
transferred to Box 2.

The un-numbered boxes are self evident in the function
they perform.

(b) Numerical examples

(1) Polynomial equations
Consider the equations

Table 1

Solution of polynomial equations

STARTING VALUES T%’::;ngzl lef‘rl}gp(;l: FINAL VALUES
V5 1-666667
1—4/5 19 —0-666667
3— /5 1-333333
—/5 1000000

1 +4/5 101 —0-8 x 10-8
34 4/5 2-000000

We introduced parameter a in the following way:

Xi+ X

X1

xf+ax§+ax§:5}
=1

+ X3:3

(5.2)

and applied the mixed method using a, = 0, so the

starting vectors were

V5 — /5
X0 = I:l — \/5:| and XY = l:l + x/S]

3—4/5

3 4+ 4/5

The resultant solutions of equation (5.1) are presented

in Table 1.

(ii) Transcendental equations

Consider the following set of equations:

X%“}-X%—}-X%:S f}zjglFijZO(i:l,...n) (53)
x; + x; =1 (5.1)
b + x5 = 3. where F; =cotB;x; fori=j
There are two sets of solutions. =0 for i =j.
1% 1
Xl — | — % and X, = 0 Table 2
14 . Solution of transcendental equations
MIXED METHOD FLETCHER & POWELL
i piljcm -
xicm fi X;cm fi
1 0-2249 x 10! 121-97 0-9 x 10—¢ 121-95 —0-1 x 10-3
2 0-2166 x 10! 114-32 0-7 x 10—6 114-29 —0-2 x 10-3
3 0-2083 x 10! 93-80 0-1 x 10=3 93-78 —0:2 x 1073
4 0-2000 x 10! 62-32 0-7 x 10—¢ 62-33 —0-2 x 1073
5 0-1918 x 10! 41-07 0-3 x 10-¢ 41-10 0-7 x 10—4
6 0-1835 x 10! 33-33 0-1 x 10-6 30-36 0-2 x 10-3
No. of steps = 13 No. of iterations = 14
Time: 1 m 56 sec Time: 12 m 51 sec
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These equations are used in the design of a VHF aerial where Bo and AB; are constants.
feeder system. The x; are the lengths associated with
the coaxial line connectors and the B; are constants
dependent on the carrier frequency. Of the many
techniques tried, the mixed method was found to be the
most efficient. Equations (5.3) were solved for n = 6.
Parameter a was introduced such that

For comparison, the solutions furnished by the method
of Fletcher and Powell (1963) are included. Both sets
of results are shown in Table 2. The same starting
vectors were used. The mixed method was about 6
times faster than Fletcher and Powell’s method. This
seems to indicate that a method which has access to
each residual independently will be more efficient than
Bi=PBo+a(AB) a®=0, a'=1 one which minimizes the sum of squared residuals.
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An iterative method for locating turning points

By P. Jarratt*

A method for calculating turning points is given which is shown to possess superlinear convergence.
The iterative formula is applied to a numerical example and the problem of accelerating
convergence is discussed.

1. Introduction of 6. These objections can be met, however, if we
The problem of computing a value 8 for which a function restrict ourselves to a formulation in which (1.1) is
f has a turning point occurs frequently in scientific work linear in x;. 4, corresponding to interpolation by the
and is usually solved by applying an appropriate root- quadratic Py(r). In this paper the properties of the
finder to the derivative f. In many cases of practical corresponding iteration function are investigated and its
interest, however, an analytic form for f” is unavailable behaviour is illustrated by a numerical example.

or difficult to obtain and alternative techniques must .

therefore be sought. One method which suggests 2. Formulation

itself is to compute new approximations to 6 by the Following the previous discussion, we fit the quadratic
use of a polynomial which interpolates f. Thus let y—a+ bt + e? @2.1)

Xiy Xi_1, ... X;_, be n + 1 approximations to a turning ) ]
point 8 of fand let P,(f) be the interpolatory polynomial to three points (x;_;, f;—;), j =0, 1, 2, and then predict
of degree n such that X; 41 by imposing the condition y; ; = 0. This leads to

Pn(xi—j) :f(xi—j)a j = 0; l’ RPN (B the syStem A

Define a new approximation to 6 by Siy=atbxi;togy, j=0,1,2 22)
0= b + 2cx i+ 1
Py(x;1y) =0, (1.1) ) )
and these four equations in the three parameters a, b, c,

and then repeat the procedure for x;,y, X; . . ., X;_n1 1, will be consistent provided that the determinantal
and so on. It is clear that this approach presents a condition
number of problems. Firstly, since (1.1) is a polynomial 2x. 1 0 0
of degree n — 1, a polynomial equation must be solved x&“ .. 1 fi
at each step of the iteration, and additionally x;,, will xi X ! 1 fl =0, (2.3)
not in general be uniquely specified. Some rule must xi'l x’_l 1 fl -1
therefore be formulated whereby x; . ; is chosen uniquely =2 i-2 i-2
as one of the zeros of the polynomial. Secondly, it is is satisfied. We now use (2.3) to examine the conver-
not even certain that (1.1) has a real root in the region gence of the method. First we define the errors in the
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