Romberg integration for a class of singular integrands

By L. Fox*

Simpson’s rule and the trapezoidal rule are members of a particular class of approximate quadrature
formulae. They have previously been used in connection with the deferred approach to the limit,
or Romberg integration, which take account of the correcting terms. New correcting expressions
are here obtained, and used with the extrapolation process, for three quadrature formulae and for
integrands with an infinity in function or first derivative at the limits of integration.

1. In a recent paper Hamming and Pinkham (1966)
considered a class of quadrature formulae of the type

X2n

I=[f(x)dx = Gh) + Eg(h) + Re, ()

where G(k) is a “Lagrangian approximation” to the
integral I, Es(h) is a series of “‘correcting terms”, and
R is the “remainder” associated with the truncation of
E ;(h) after some particular term.

Here we take the Lagrangian form

G(h) = h(afo +bfi +cf2 + ...
st cf2n-2 + bon—l + aon)’ (2)

where f, = f(xo + rh). The weight factors have the
pattern (@, b, ¢, b, ¢, . . ., ¢, b, a), and for this we need a
range of 2n + 1 pivotal points as indicated in the limits
of integration in (1). If the formula is to be meaningful,
with weights independent of n, we must necessarily have

b=2(1—a), c=2a 3)

The case a = 4 gives Simpson’s rule, which we designate
by G(h) = S(h); a = % the trapezium rule, G(h) = T(h);
and Hamming and Pinkham also consider in detail the
case a = 0, which we here denote by G(h) = U(h). The
trapezium rule, of course, does not require an odd
number of pivotal points.

In (1) the term E(h), the “correction” to the approxi-
mate formula, is given in the literature for the trapezium
rule, both in terms of differences and also of derivatives,
under the names Gregory formula and Euler-Maclaurin
formula, respectively. The correction involves differences
or derivatives only at the end points x, and x,, of the
interval of integration.

2. The remainder term, Rg, is expressible in various
ways. For example, for the Euler-Maclaurin formula
we can write

2,
= (7,,% Bonh?mt1fem(£), @)

where xy < £ < x,,, B,,, is a Bernoulli number, and the
highest derivative retained in the correction term is of
order 2m — 3. Now for fixed 4 the remainder term will
not generally tend to zero as m increases, but for fixed
m there will usually be some sufficiently small value of
h for which Ry is negligible for some required precision.
This is the justification for the use of this kind of
quadrature formula, which is generally asymptotic but,
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provided that A is not too large (and this must be
watched), has the property that truncation at a small
enough term will give rise to an error of order of magni-
tude of this term. We shall assume that this is so for
functions considered in this paper and whose definite
integrals exist, and shall make no further reference to the
remainder term.

3. Corresponding to the Gregory formula, Hamming
and Pinkham find corrections in terms of differences for
the S and U formulae. In this note I give a different
method of obtaining these results, and also produce
the corresponding derivative form of the correcting
terms. For some purposes the latter is more valuable,
since it gives the nature of the error of the approximate
quadrature formula as a function of 4, which is necessary
for the successful application of the technique of the
“deferred approach to the limit”, or “extrapolation to
zero interval length™.

Now for well-behaved functions the correcting terms
always consist of a series of even powers of 4. For other
integrands, however, for example those with an infinite
derivative at one terminal point, the form of the cor-
rection might be quite different, and I show how we can
adapt the basic formulae to produce this information.
An adaptation of the extrapolation technique can then
give very good answers without using small intervals or
special techniques to take account of the singularity.

We can even deal with an infinity of the function at a
terminal point, and for this purpose the use of the U
formula avoids the obvious embarrassments of the S and
T formulae. Various numerical examples indicate the
power of these methods. Finally, we can use our new
devices in a systematic way, effectively an extension of
the Romberg integration technique which has formerly
been applied only to well-behaved functions.

Difference formulae for smooth integrands
4. In classical finite-difference notation we can write

Egh) = D=Y(E* — 1)fy — G(h), )
and from (2) and (3) we easily find
h=1G(h) =a(l + E?") + bE(1 + E2 +...+ E?*2)
+CcEX(1 +E2+... 4 E™n%)

E—1)?+2
= {%} (E> — 1). ©)
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Romberg integration

Then
E—1)2+2
Eg(h) = h{(hD)- 1— ‘iE—zifr—E}(fzn —fo- (M

We can, of course, express the correcting terms in any
way we please. In terms of forward differences of f; we
find that the contribution at the lower limit has the
symbolic form

h{a(E — 1)2 +2E

E2 1 - (hD)_l}

=h{£+l+ LN }

2+A A T2+A 1n(14A)

—h{@GA LA+ A — )
F(—3AF B AT A
+de A — s AS L)) ()

where we have used the relation E= 14 A. Cor-
responding treatment with backward differences at the
upper limit produces the result

Eq(h) = h {— 45 (Vfau — Do) — 45 (Voo + B
— 5 (Vify — AYp) — o (Vo + AY)
— 588 (Vo — AV — -, ©)

which is the Gregory correction to the trapezium rule
(@a=1%),and

Es(h) = h {— 15 (Vfan — AYD) — vho (V2 + AY0)

— 73130 (V2 — A%)) — .. 1, (10)

which is the corresponding correction to the Simpson
rule, the choice a = 4 having eliminated both the first-
difference and also the second-difference terms. We also
have

Ey(h) = h (& (Vfon — Do) + 72 (Vo0 + B%0)

+ 31—636(V3.f‘2n - A3f0) + .. -}’ (11)
for the case a = 0, the coefficients coming from the last
term in (8).

Hamming and Pinkham show that the Simpson
coefficients are everywhere smaller than the Gregory
coefficients, and that those of (11) are smaller than either
for differences of order greater than four. They there-
fore recommend the U formula as the best of its class,
and this has some justification if, as they seem to think
and as I also think, corrections in terms of differences
should be employed wherever possible and as a matter
of course even in modern machine computation.

On the other hand we note that if the integrand is a
polynomial of degree 2n all the formulae terminate with
the differences A2" or V22, They then all represent
exactly the same linear combination of the same pivotal
values fy, fi, - - -» fan, differing only in the way in which
this combination is shared between the Lagrangian terms
and the correcting terms.

Derivative formulae for smooth integrands

5. For those who do not wish to make a correction,
however, and ask that the correcting terms should be of
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high order in 4 and therefore negligible at a not too
small interval, the Simpson rule is obviously the best.
Writing

(E—1?* E—1

F_1 —E+1l" tanh 44D, P_]— cosech 4D,
12)
equation (7) becomes
Eg(h) = h{(hD)~! — atanh $hD — cosech hD}. (13)
Then, with the aid of the expansions
tanh 1hD = 3hD — ¢ h3D3 + wis D3
- 4113720 h7D7 + e
(14)

cosech hD = (hD)~ ' — % hD + 55 h3D3

- 1531120 hSDS + e o)y
we can produce the required formulae. For a = } we
have the Euler-Maclaurin correction

Er(h) = — 72 h(fan — f0) + 755 h*(f20 — f0)
— 5otz B — ) + ..., (15

for a = 1 we obtain the corresponding Simpson cor-
rection

Eg(h) = —ths h*(f3n — f3") + Tz IS} — f&) — ..
(16)

(which I gave in Fox, 1961) and for the U formula we
find

Ey(h) = £ h(f3, — fo) — 565 B (f5n — f0)
& U — &) — ... (A7)

It is interesting to note that the early U coefficients are
larger than the T coefficients and of opposite sign (as, of
course, they are in (11) compared with (9)), so that the
unrefined U formula will have a larger error than the T’
formula. Equation (17) is in fact a special case of the
general Euler-Maclaurin formula, effectively with inter-
val 2h, and like (15) has coefficients proportional to the
Bernoulli numbers.

If sufficient derivatives exist everywhere, these results
imply that

I‘— T(h) == ATh2 +BTh4 + CTh6 + . e

I'— S(h) == Ash4 + Bsh6 + Cvsh8 + .« o

I‘— U(h) == Auhz +Buh4 + Cuh6 + )
where I is the correct value of the integral and the
A, B, C, . . ., are constants. These series are asymptotic,
but if the remainder term is negligible we can say that
the error is O(k2) in T(h) and U(h) and O(k*) in S(h),
and use the extended forms (18) to get a better result
from two or more approximate computations with
different values of A.

Integrands with an integrable singularity at a limit of
integration

6. Inequations (15)—(17) the correcting terms involving
fo and f,, can be treated separately, and either can be

} (18)
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Romberg integration

expressed, for example, in terms of derivatives at some
other pivotal point. Formally this can be achieved by
the classic device incorporated in the formula

Er(h)fy = (&5 WD — 535 h*D? 4 . . )E-Ef,
= (# h2D — 715 h*D3 + .. )(e~"D)f,
= (5 12D — 5 h3D? + 25 kD3 — . . )f,. (19)

The derivatives of f; are functions of A, and this would
seem to imply that the correcting terms include all
powers of A from the second onwards. If f(x) is well-
behaved, however, with a convergent Taylor’s series at
every point, reversal of the method which produced (19)
shows that the coefficients of odd powers of h are
identically zero.

If the Taylor’s series does not exist at x,, however, for
example when f”(x,) is infinite, we would like to use a
formula like (19) in which the derivatives do exist. We
cannot now expect that odd powers of 4 will disappear,
or even that the correcting terms are expressible as a
power series in h. The unsuspecting use of (18), for
purposes of extrapolating to the limit, will then have no
validity.

7. We consider first the case in which f7(x,) is infinite,
but assume that f(x) is everywhere finite and has no
other singularity in the interval x, to x,,, that is its
Taylor’s series exists at every point other than x,. To
obtain the required formula we treat separately the
contributions to the integral from the ranges x, to x;
and x; to x,, For the latter we have, for the T(h)
formula,

[fo)dx = BES 4+ fo+ - fanes + 320
+E+ R

E= — 50 (f3n— f) + wsh (fin —f1) —...).

For the interval (x,, x,) we use the Taylor’s series at
the point x;, given by
S+ e —x)} =1 + (x — x)f

_ 2
+ & X gy e

in which all the derivatives exist. This, by our hypo-
thesis, will converge on the negative side of x, as far as
X (but no further!), so that

, B,
o hmh= M =

Then also

(20)

x h ., K o,
jf(x)dx=hf,— sifit g fi—n @)
e ! !
and from (22) and (23) we deduce the required result
* ., 2h¢ .,
L{(x)dx = Wfo +1) = 537 1 + 55 /i
3h°

_2.—5! 11‘!7)_*_....(24)
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The addition of (20) verifies that the formal result (19)
holds in this case also.

Similar treatment of (16) and (17), either by the
process which led to (19) or by the rigorous analysis
which now needs separate treatment of the first two
intervals (x,, x;) and (x;, x,), produces the formulae

Es(h)fy = (ti5 h*D3 — 115 K°D*

+ ois h6D5 T e )fl
Ey(Wfy = (— s h*D + § h3D?

— s h*D* +. . )f; ),
as the contributions to the correcting terms at the
offending lower limit in the S and U formulae. [I gave

the results (19) and the first of (25), in forms based on
the rigorous approach, in Fox, 1961.]

(25

The deferred approach to the limit
8. We propose to use (19) and (25) solely for the

‘purpose of discovering the form of the correcting terms

of the approximate quadrature formulae, for use with
the deferred approach to the limit. The point is that
the derivatives of f; are themselves functions of A, and
their nature may give different expressions on the right-
hand sides of the new equations corresponding to (18).

Consider, for example, the integraiion between x = 0
and x = 1 of the functions

[i®) = x'2, fo(x) = xInx, fy(x) = x!2ln x,  (26)

all of which have infinite first derivatives at the point
x =0. By inspecting successive derivatives, and
remembering the contributions from the upper limit, we
find the correcting terms shown in Table 1. In all cases
the U formula has the same terms as the T formula,
though in different magnitudes.

Table 1
Function I— Tk I— S(h)
x1/2 h32 h2 pt L 32 R4 hS, ...
xIn x h*lnh, h2, b4, . .. h2, R4 K, . ..

xU2Inx k32 1n h, k32, h2, k4, ... h312In h, k312, K4, BS, . . .

The function

Jix) = {x(1 —xp/2 @7

has an infinite first derivative at both limits x = 0 and
x = 1, and we find that all three formulae have correcting
terms

B2, BSI2 B2, (28)

with no even powers of 4 in sight.

9. The method of the deferred approach proceeds as
follows. For the integration of x!/2 with the T rule, for
example, we write

I—T(h,)= A2 + B2 +Ch +...,  (29)
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Romberg integration

take two or more values of 4, and compute the cor-
responding 7(h,), then eliminate one or more terms on
the right-hand side of (29) to produce a better approxi-
mation to /. In what follows we shall assume successive
halving of the interval, so that h, = 1h,, h; = 1h,, etc.

Eliminating A in (29), and neglecting the remaining
terms, we find as a better approximation to the integral
the quantity

T(hy, hy) = 22T, — T)/2v2 = 1),

where T, = T(h,). The corresponding formula holds
(in all cases) for the U quadrature, and here also for
Simpson’s rule, though the application of (30) with
Simpson’s rule should give better results since the other
neglected terms are smaller.

In fact for the T and U computation we might prefer
to eliminate both 4 and B in (29) using three approxi-
mate computations, and with the neglect of later terms
we find the better approximation

T(hy, by, hy) = 77 {(32 + 8v/2)T3 — (12 + 10v/2)T,
+ (1 +2v2)T4},
where T, = T(h,) and hy; = 3h, = 1h,.

(30)

(3D

Numerical examples

1
10. We give some results for J f(x)dx for the integrands
0

of Table 1. In all cases we compute pivotal values correct
to six decimals, and avoid further rounding errors by
keeping a “guarding” figure in the evaluation of T'(h),
etc.

1
For j x1/2dx we find
0

S(}) = 0-656526,
T() = 0-643283  T(}) = 0-658130
U@) = 0-6830125  U(}) = 0-672977

S() = 0665398,

T(s) = 0-663581,

U(%) = 0-669032,

S(}) = 0-663079

(32)

2

and with decreasing h all the formulae converge to
I=2/3.

Extrapolating, we find from (30), in obvious notation,
the results

T3, 3) = 0-666250, T(}, 7s) = 0-666562 3
U, §) = 0-667488, U(}, 7s) = 0-666875 }, (33)

and (31) gives the still better results
T(}, §, %) = 0-666667, U(}, %, ¥%5) = 0-666670.  (34)

The formula (30) is already very good for the Simpson
rule, giving

S, 4) = 0-666663, S(}, 75) = 0-666667. (35)
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1
11. For — j x In x dx the Simpson rule, interestingly
0

enough, has ‘hZ-extrapolation” (compared with h*-
extrapolation in well-behaved cases), so that with
h, = ¥h, we have

S(hy, hy) = S; + 3(S; — S)). (36)

For the corresponding 7 (and U) formulae the elimina-
tion of the first term of the correction gives

Ty41nh,) — Ty(Inh, — In 2)

Tthys 1) = 3inh, +1n2

(37

This can be used but is relatively unsatisfactory since it
depends on the current absolute size of the interval.

In any case the second correcting term is of com-
parable size to the first, and we certainly do better to
eliminate both 42 In & and A2, obtaining the satisfactory
formula

T(hy, by, hy) = 5(16T5 — 8T, + T1).  (38)

We find

SG) = 0-245207,
TG) = 0-227227,  T(}) = 0-243405,
U@) = 0-281168°  U($) = 0-259583,

S(%s) = 0-249699,

T(#%s) = 0-248125,

U(s) = 0-252846, ,

S(%) = 0-248798

(39)

which are converging to = }.
Extrapolating from (36) we obtain
S, H = 0-249995, S(%, 7s) = 0-250000.
From (37), which for A; = 27" reduces to

4nT2 _— (n + l)Tl
3n—1 ’

(40

T(hy, hy) = 41)

with a similar formula for U(h,, h,), we compute

T}, %) = 0-253112, T(3, vs) = 0-250486
UZ, 3) = 0-246632, U}, 1) = 0-249478 ],

and (38) gives
T, %, 7) = 0-250000, U(%, 4, 7s) = 0-250005. (43)

42)

All these results confirm our expectations.

1
12. For —Ix‘/z In x dx we should expect, from
0

Table 1, that in all cases we need to eliminate the first
two correcting terms to get a good answer, and that the
Simpson computation, with smaller neglected later terms,
would have the advantage. In all cases the extrapolation
formula is typified by

S(hs) — 27 1128(hy) + $S(hy)
1—2"42 4% ’

S(hl’ hz, hs) = (44)
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We find

S(4) = 0-395784
T(3) = 0-358104  T(}) = 0-408090
U(}) = 0-4711435  U(}) = 0-458076

S() = 0-436602,

T(s) = 0-429474;

U(+s) = 0-450859 ,

which are converging to

SG) = 0-424752]

(45)

= $. Extrapolation from (44)
gives

S@&, 4, 5) = 0-444445, - T(}, 3, ©5) = 0-444310,

UG, §, 7s) = 0-444715, (46)

which again confirm our predictions.

1
13. Finally, for J- {x(1 — x)}'/2dx, the result (28)
0

suggests that the Simpson rule, extrapolated or other-
wise, is not an order of magnitude better than the other
formulae. In all cases elimination of the first correcting
term gives the formula typified by (30), and the
elimination of the first two terms is effected with the
extrapolation typified by

16T — 64/2T, + T,

This by hs) = —7—¢ 75 @
Computation gives
S(F) = 0-372008  S(}) = 0-385448,
T(}) = 0-341506  T(}) = 0-374463
UR) = 0-433012  U(}) = 0-407420 (48)

S(%) = 0-390148;
T(#s) = 0-386227,
U(s) = 0-397991, ,
which are converging to I = {7 = 0-392699... .
Extrapolation from (30) gives
S@&, %) = 0-392719, T(@, %) = 0-392661,
U(%, 75) = 0-392834, (49)
and (47) produces
S, ¥, %) = 0-392702, T, 4, %) = 0-392698,
U}, §, 7%s) = 0-392708.
Again our major expectations are confirmed.
The power of the method is here indicated by a
remark of Hamming and Pinkham, that this function,
using the U formula with corrections up to and including

fourth differences, “integrates miserably with 128 points,
the relative error being 0-0002”.

(50)

Integrands with an infinity in function value

14. If we have 2n + 1 pivotal points with the largest
interval, and halve the interval once, both the S and T
formulae require 4n + 1 function evaluations, and a
further halving gives a total of 8# 4 1 evaluations. For
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the U formula, which with the T formula has ‘“easier”
weights than Simpson, these figures are 3n and 7n
respectively. This hardly implies, for the type of
examples treated, that U is superior to S.

If the integrand has an infinity at the lower limit,
however, the U formula comes into its own. The S and
T formulae have an embarrassing infinity in f;, and
moreover an equation like (21) fails to converge at
x = 0 so that formulae (19) and the first of (25) are no
longer valid. For the U formula we do not use the value
Jfo, equation (21) is not required to converge at x = 0,
and if the integral exists we are perfectly satisfied with
the second of (25) to produce the contribution at the
lower limit to the error in the approximate formula.
We can then proceed to use the deferred approach in the
standard manner.

15. Consider,

for example, the computation of

1
J- x~12dx, whose integrand is infinite at the lower limit.
0

Consideration of its derivatives, at x = A, show that the
correction terms are multiples of

h2 R2 R4, L (51)

Extrapolation to eliminate the first term, with A, = }h,,
produces

Uhy, hy) = (2'2U, — U)/2'2 — 1),
and if we also eliminate A2 we find

(161/2 — 8)U; — 14U, + (4 — /2)U,
15v2 — 18 :

(52)

Uhy, hy, hy) =
(53)

Computation gives
U(}) = 1-577350, U(}) = 1-698844, U(is) = 1-786461,
(54)

which are converging at no great rate to I = 2. Extra-
polation using (52) gives

U, 3) = 1-992156, U, +'¢) = 1-997987, (55)
and (53) gives the remarkably good result
U, §, ) = 1-999931.

This may be compared with a computation given by
Davis and Rabinowitz (1965), in which the unrefined
Simpson’s rule and the trapezium rule (taking f(0) = 0)
have an error of about 0-03 with more than 1000 pivotal
values.

(56)

Analogy with Romberg ihtegration

16. In Romberg’s scheme of extrapolation (Romberg,
1955) the calculation is as shown in Table 2.

Here G(h,) is the value obtained by the approximate
quadrature formula at interval #,. The second column
gives the results of eliminating the first correcting term
from G(h,) and G(h,, ;). These quantities have errors
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Table 2 Table 4
G(hy) U(3) = 0-500000
G(hy, hy) 0-396375
G(hy) G(hy, hy, h3) U%) = 0-433012 0-392789,
G(hz, hy) 0-393423, 0-392697
G(h3) U$) = 0-407420 0-392707,
. 0-392834,
U(s) = 0-397991,
dominated by the second term of the original correction Table 5
formula, and this is now eliminated from G(k,, h,y ) and UG) = 1-414214 .
G(h,1 1, h,y5) to give a quantity in the third column. 1-971195
Successive columns converge with increasing speed to U) = 1-577350 1-999143
the correct result. ¢ 1-992156 1-999984
Even with well-behaved functions the formulae in U®G) = 1-698844 1-999931
successive extrapolations are not the same. For example 1-997987

with Simpson’s rule, with successive halving of the
interval we shall normally have

1
G(hy, hy) = G(hy) + T {G(h) — G(hy)}
G(hp hz, h3) = G(hz, hs)
+

(57)

6 __

55— (Glhz, hs) — G(hy, b))
and so on.

17. We can express our new computations in a very
similar form. As a first example consider the evaluation
of the integral in § 10 with the U formula. With the
array of Table 2, the second column is obtained from
equation (30), and the results have errors dominated by
a constant multiple of A2. The third column is then
obtained by h2-extrapolation, corresponding to the
factor (22 — 1)~!in an equation similar to (57), the third
column by /*-extrapolation, and so on. The tableau is
shown in Table 3. The results of the third column are,

of course, identical with those obtained in § 10 from
equation (31).

Table 3
U(3) = 0-707106,4
0- 669834,
U@F) = 0-6830125 0-666706
0-667488, 0- 666668
U®}) = 0-672977 0-666670
0-666874,

U(s) = 0-669032,

For the problem of §13 elimination of successive
error terms is accomplished by a formula similar to
(30), the term 24/2 in that equation being replaced by
23122512 2712 in successive columns. We find the
array of Table 4.

Likewise, without further description, we find for the
problem of § 15 the array of Table 5.
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U(#%s) = 1-786461

18. In these examples the formulae varied from
column to column, but were constant within each
column. This cannot always be guaranteed, and indeed
for the problems of §§ 11 and 12 the formulae for the
second and third columns, but not for succeeding
columns, depend on the position in the column. We
can find the relevant formulae, but we might prefer to
omit these ““awkward” columns. In the problem of § 12,
for example, we might go directly to the third column
by way of equation (44) for the U formula, say, and
then proceed with 42, A%, . . . extrapolation in succeeding
columns. This gives the array of Table 6.

Table 6
U(3) = 0-490129
UZ) = 0-471143 0-445552

— 0-444436
U®F) = 0-458076 0-444715

U(%) = 0-450859

Extensions

19. The methods can obviously be extended to cover
more elaborate integrals than those mentioned in § 8 and
illustrated in subsequent sections. Consider, for
example, the integrals

1 1
I, :jx'/zg(x)dx, I, = fx In x g(x)dx,
0 0

1
thﬂ”hxﬂmﬁ,G&

in which g(x) has no singularity and can therefore be

represented by a convergent power series. It is then

sufficient to consider the respective integrands

fs(x) = 12, fy(x) = x 1 n x, fo(x) = x"+1/21n x,
r=20,1,2,....(59)
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Romberg integration

Table 7

I, — T(h) h32 k2 h512 p712 g4, . . .

I, — S(h)y B32, hS12 712 4 pO12 p11i2 ps .

L —Th) h2Inh h2 B3, h*Inh, h*, hSInh, K5, . ..

L —Sh)y h% k3, h*Inh, h*, hSInh, k5, . ..

L —T(h) h2Inh k32 k2 h521n h, k512, K712 1n h, K712,
h, ...

I, — S(h) h321Inh, h312, h5/21n h, h5/2, K7121n h, K712,
h, ...

Analysis corresponding to that of §8 reveals the
correcting terms shown in Table 7.

We note the vanishing of a perhaps expected term
h*Inh in I, — T(h). Other terms might vanish for-
tuitously, for a g(x) of the form

gx)=a+bx+cx2+..., (60)

for some particular combinations of the constants
a,b,c,.... It is, of course, necessary to eliminate in
the analogous Romberg process the terms which are
present in the correcting expression, but it does not
matter if we eliminate a term which is not present!

20. For

2

t, x
12: — '[0 (m) Inxdx=1— E N0'1775339 (61)

we find for the 7T(h) formula the array of Table 8.

The second column is the result of eliminating simul-
taneously the correcting terms A2 In A and A2 by means
of (38). The third column is obtained by eliminating
the next term A3. (We note that even the term 7(1) can
play an effective part in the computation. In fact if we
use 7(1) and 7(3) in the Romberg table corresponding
to the examples of §§ 10-13, we find answers correct to
within a rounding error without using 7(%) at all!)

At this stage we find, with obvious notation,

I—(Ty, 12, 14> 178) = DIn2 + E

N
62
I— (T2 174 178 1/16) = %6 D In 2 + 5 Jk’ (62)

References

Table 8
T(1) = 0-000000
7(3) = 0-115524, 0-178022,
0-177589,
T(3) = 0-157900 0-177643; 0-177531,
0-1775344

T(}) = 0-171654, 0-177548,

T(%) = 0-175829,

where D and E are constants involved in the respective
correcting terms A*In A and A% We would normally
eliminate these simultaneously from three approxima-
tions, but in the absence of a third we do well to eliminate
the E term at this stage, obtaining the single value in the
fourth column.

Conclusion

21. We have demonstrated, in the main parts of the
paper, a method for finding the dominant correcting
terms in the integration of functions with an infinite
value or infinite first derivative at a pivotal point. The
method of the deferred approach to the limit, and the
special form of this embodied in Romberg integration,
have been adapted to cover this situation. Numerical
examples reveal both the power and the simplicity of the
method. Other cases, such as an infinity in a higher
derivative, or singularities at some internal point in the
range, can obviously be treated by similar processes.

We have not discussed the question of accumulation
of rounding error, but this is clearly not a difficult
problem. At each stage every number is expressible as
a linear combination of pivotal values, and in our
examples the resulting effect of errors of 0-5 in the last
digit of the pivotal values is small. In these examples
the maximum error can nowhere exceed two units in the
last figure in the final results.
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