
Decision tables

By P. J. H. King*

This expository paper outlines the essential features in decision table development and illustrates
applications in various fields. A comprehensive bibliography is also presented.

There is at present a growing interest in decision tables
among programming and systems professionals. For
the past several years occasional articles and papers have
been appearing in American magazines and journals
pointing out the value of decision table techniques to the
user and discussing translation to a lower level of
program. This body of literature is reviewed and dis-
cussed below. Little work, as yet, seems to have been
done on this subject in the U.K.

The purpose of this paper is to explain the basic ideas
of the decision table approach, to illustrate its wide
applicability by way of examples, and to present a
bibliography. The use of decision tables in the context
of more comprehensive systems is also mentioned.

The basic ideas
A decision table is a useful tool when the rules for

handling a data record are more complex than a single
simple discriminating test. Usual practice is to record
and analyse this type of situation by means of a flow-
chart. This is then used for writing a program made up
of a number of branches. Such programs, even though
written in a high level language, are often not readily
comprehensible in the absence of the accompanying
flowchart or without constructing one.

Consider the flowchart of Fig. 1. This describes the
rules for preparing lists of students divided into five
categories on the basis of end of year exam results and
other information in the case of those who have failed
their main subject. The flowchart is drawn more
formally in Fig. 2. We see that it represents a five way
program branch on the outcome of tests on some of four
distinct conditions. The five different actions may be
thought of simply as program routes. MM and MA
are marks obtained in main and accessory subjects
respectively. C is set positive if special consideration is
recommended and R is set positive if the student wishes
to repeat the course. P is the pass mark.

If asked to program on the basis of Fig. 2 the ALGOL
programmer would write something like:

if MM < P then (if C > 0 then go to R2>
else if R > 0 then go to R4

else go to R5)
else if (MA < P then go to R2

else go to R\);

The COBOL programmer might write something like:

* Computer Unit, University College of Wales, Aberystwyth, Cards.

135

HAS STUDENT
FAILED MAIN SUBJECT

HAS HE FAILED
ACCESSORY SUBJECT

Wa/ \Yes

RECORD ON RECORD ON
LIST 1 LIST 2

Yes

DOES TUTOR RECOMMEND
SPECIAL CONSIDERATION

Yes,

RECORD
LIST 3

S X^No

ON DOES STUDENT WISH
TO ATTEMPT COURSE

AGAIN

^ \°
/ \

RECORD ON RECORD ON
LIST 4 LIST 5

Fig. 1

Fig. 2

IF MM IS LESS THAN P NEXT SENTENCE
OTHERWISE IF MA IS LESS THAN P GO TO
R2 OTHERWISE GO TO Rl. IF C IS GREATER
THAN ZERO GO TO R3 OTHERWISE IF R IS
GREATER THAN ZERO GO TO R4 OTHERWISE
GO TO R5.

The PL/1 programmer might write:

IF MM < P THEN IF C > 0 THEN GO TO R3;
ELSE IF R > 0

THEN GO TO R4;
ELSE GO TO R5;

ELSE IF MA < P THEN GO TO R2;
ELSE GO TORI;

The programmer with a decision table feature in his
language would draw up a table similar to Table 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024



Decision tables

MM <P
MA <P

00
R > 0

N
N

Table 1

N
Y

Y

N
Y

Y

N
N

GO TO Rl R2 R3 R4 R5

Table 1 illustrates the generally accepted notation for
decision tables. The table is physically divided into four
quadrants by double lines. The upper two quadrants,
the Condition Stub and Condition Entry, describe
conditions which are to be tested. The lower two
quadrants describe the actions to be taken depending
on the outcome of these tests. A "rule" consists of a set
of outcomes of the condition tests together with the
associated actions. It is a single vertical column of the
table to the right of the vertical double line. Thus the
third rule in the above table says that if the first and
third conditions listed in the condition stub are satisfied
then the action to be taken is GO TO R3. The dashes
in this column against the second and fourth conditions
mean that the outcomes of the tests on these conditions
are not relevant in deciding whether the action for this
rule should be taken. Thus to decide whether the action
is to be GO TO R3 these two conditions need not be
tested. In this example there are five rules.

Diagrammatically the structure of a decision table is
shown in Fig. 3.

Condition
Stub

Action
Stub

Rule 1 Rule 2

Condition
Entries

Action
Entries

Fig. 3

The lines of a table may be written in either extended
or limited entry form. In the example of Table 1 the
condition section of the table is in limited entry form.
This means that the condition is completely specified in
the stub and the entry portion contains only Y's (for
Yes) showing where a condition must be satisfied, N's
(for No) showing where a condition must not be satisfied,
or dashes which indicate that a condition is immaterial
("non-pertinent") for the particular rule. The Action
Entries in Table 1, on the other hand, are in extended
entry form. This means that the statement to be obeyed
is only partially specified in the action stub and is
completed by the action entry.

The second example shown in Table 2 is taken
from an input editing procedure. This has the con-
dition part of the table in extended entry form. For
example, R3 will be satisfied if CODE = 1 3 and
AMT > 50, the third condition, for which a dash
has been entered, being non-pertinent for this rule. In

Table 2

CODE =
AMT >
AMT <

TYPE "ERROR 1"
TYPE "ERROR 2"
TYPE CODE, AMT
GO TO A
GO TO B

R i
7
99
—

_

X
X
—

X

R2
7
—
99

_
—
—
X

—

R3
13
50
—

_

X
X

—

X

R4
13
—
50

_
—
—
X

—

R5
29
99
—

_

X
X
—

X

R6
29
—
99

—
—
X

—

R7
43
—
—

_
—
—
X
—

E

X
—

X
—

x

this table the action stub is in limited entry form. It
lists five complete statements. If the conditions for R3
are satisfied then the second, third and fifth of these will
be executed. Limited entry format for the action part
of the table comprises complete statements being
entered in the stub and the entries being either x (the
action is to be taken) or dash (the action is not to be
taken). It should be noted that whilst in the condition
stub no significance is attached to the order in which the
conditions are stated, in the action stub the order in which
the actions are stated is the order the action sub-set
specified for a particular rule will be executed. The
example of Table 2 contains the ELSE (or ERROR)
feature not previously mentioned. This is the rightmost
column which contains no entries in the condition part
of the table. It specifies the actions to be taken if none
of the rules are satisfied. It must always be included
where the rules given do not cover all possibilities.
Where they do it can be omitted. The column headings
R,, R2, . . ., E in Table 2 are not part of the table but
have merely been included for ease of reference.

Returning to the example of Table 1 the advocate of
decision table use maintains that the table has a clearer
and more readily apparent meaning than any of the
usual programming language versions. Moreover,
whilst the flowchart is a necessary adjunct to the pre-
paration and understanding of any one of these pro-
grams it is quite unnecessary to the construction or
understanding of the corresponding decision table.

Probably the most important aspect of the decision
table notation is that it contains less information than
a corresponding flowchart. A flowchart contains the
logical rules of the problem and also specifies the pro-
cedure by which the outcomes are to be arrived at.
Several flowcharts can usually be drawn for the same
problem, all in a sense "correct". They are the same
from the point of view of embodying the logical decisions.
They are different procedures for giving effect to these.
A decision table specifies only the logical rules. As the
order in which the conditions in the condition stub are
given has no significance, and neither is there any
significance in the order in which the rules are stated,
the condition section of the table contains no implica-
tions about the procedure for its implementation. This
aspect is discussed in more detail below.

136

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024



Decision tables

Thus Decision Table notation provides the means of
passing over to the compiler (or perhaps more correctly
to the compiler writer) the construction of a procedure
for implementation. According to the criteria con-
sidered important some procedures will be better than
others. This choice of procedure has hitherto been
regarded as the province of the applications programmer.
In a general way it has been left to his good sense to
ensure that the most important and frequently required
tests are done first. In effect he is required to see that
the flowchart corresponding to the program is a
reasonable one. He uses available information on fre-
quency of outcome of the various cases and whether
core minimization or run time minimization is the more
important, as best he can in achieving this. A further
development in programming languages will be to hand
this information along with the decision table to a
compiler which will then be responsible for this. Thus
decision tables not only offer a clearer way of stating
the logic of a program but also provide the notational
means of extending the scope of automatic programming.

The development suggested in the previous paragraph
is not only required of business data processing languages
but is also needed in the scientific field. At a lecture in
London in January 1963, (10), Professor F. Hoyle when
discussing the use of computers in his field referred to
programming languages and said " . . . I would be much
happier with an autocode if its main aim was to help
with the logical structure of a program rather than with
the arithmetical details. Mathematics already provides
us with admirable notations for setting down equations.
If an autocode were to provide equally powerful nota-
tions for the logical structure . . . My point is that at
present we are offered assistance with the comparatively
easy part of programming and not with the hard
part. . .".

It is my view that decision tables provide in part the
notational advance for which Professor Hoyle was
asking.

Further examples
Three further examples are given in this section. The

reader is recommended to ignore these where he is not
familiar with the subject-matter.

In (2) an ALGOL procedure is given. This contains
the following assignment.

/ : = (if xw > 0 then —xx/(2-0 X xw) else if
phi [upper] > phi[lower]

then 3 0 X vt[lower] — 2-0 X vt[mid] else 3 0 X
vt[upper] — 2 0 X vt[mid]);

It is my view that Table 3 expresses the required action
more clearly and is more readable. A worthwhile
extension of ALGOL would be to allow the use of this
type of tabular form.

Computers are now being used in the field of invest-
ment as an aid to portfolio management (e.g. see
"Computer Service Speeds Investment Choice", The
Times, 19 January 1967). The essential feature in such

Table 3
xw> 0
phi[upper] > phi[lower]

t := — x*/(2-0 X xw)
t : = 3-0 x vt[lower] — 2-0 X vt[mid]
t : = 3-0 x vt[upper] — 2-0 X vt[mid]

Y

X

N
Y

X

N
N

X

Table 4

P.E. ratio <
Div. yield >
Cash/market value >
No. of div. increases >
No. of div. reductions =

List A
ListB
Ignore

12
5
2*
1
0

X
—
—

12
5
2*
2
1

X
—

12
4
5
1
0

X
—
—

12
4
5
2
1

X
—

10
6
0
1
0

X
—
—

10
6
0
2
1

X
—

—

X

use is that a file is maintained with detailed records of
possible investments. The investment manager specifies
what he considers important criteria, the file is then
interrogated and a list of those investments conforming
to the criteria is produced. It is suggested that the
facility to specify the requirements in decision table form
would be useful in this context.

Suppose the basic requirement is a price/earnings ratio
of less than 12, a dividend yield of more than 5%, cash
in the last balance sheet of at least 2\ % of market value,
no dividend reductions, and at least one increase within
the last six years. However, a dividend yield of 4 % is
acceptable provided the cash in balance sheet is 5 % of
market value or alternatively no cash in the balance sheet
(but no bank overdraft) is acceptable provided the yield
is more than 6 % and the price/earnings ratio is less than
10. As an alternative to the no dividend reduction
criterion one dividend reduction is allowed provided
there have been two or more increases, but shares in
this category are required to be listed separately.
Table 4 expresses the requirements. Moreover the
general format is suitable for use as input to a generalized
program to perform this type of interrogation.

The third example shows how a decision table feature
can be of value in non-numeric programming. A
familiar example used when introducing list processing
and its applications is that of the formal differentiation
of an algebraic expression; see for example Wilkes (29).
Usually, as in the cited example, the result will be pro-
duced in a form involving expressions including zeros
and ones, for example 0 + y and 1 X >>. It is then
observed that a further program will be required to
perform the tidying-up process. A decision table is
helpful in writing this program.

Following the cited paper of Wilkes we assume the
expression is stored as a list structure representation of
the Polish notation. We write a subroutine TIDY (R)
where the argument R will always be a list. This list

137

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024



Decision tables

will consist of a single cell the CAR of which is either an
atom, or a list which is a triad. Thus the expression y
will be as shown in Fig. 4(a), the expression by + a as
shown in Fig. 4(6).

R

—DZI
•i-
ED-HIE

liUJ—l*U—i

Fig. 4

The program given below and in Table 5 is written in
an informal ALGOL-like notation. We assume the
existence of suitable facilities for recursion, i.e. the local
variables A, B,C, the argument R, and the return address,
are held in nesting stores which are pushed down when
values are assigned and popped up on exit from the
subroutine by the RETURN statement. The reader is
recommended to work through this program with R
having the value ay + bz say, and then again after
making the substitution y = 0, z = 1.

SUBROUTINE TIDY{R)
IF CAR{R) = ATOM THEN RETURN
OTHERWISE
(A: = CAR(R), B: = CDR{A), C: = CDR(B))
TIDY(B)
TIDY(C)
TABLE
RETURN

Note that the TABLE embodies the fact that the
numerator when the operand is / will be the second
member of the triad and that the exponent when the
operator is \ will be the third member of the triad.

Note that there is no provision for monadic operators
so that 0 — y will be unchanged. Extension of the
program to cover monadic operators replacing, for
example, cos (0) by 1 is straightforward.

Flowcharts and decision tables

The purpose of this section is to introduce and discuss
aspects of translating decision tables into procedures.
We do this using the example of Table 6 as illustration.

Table 6

C3

Y
Y
N

R.

Y
—
Y

R2

—
N
N

R3

N

—

R4GO TO

Note that there is apparent ambiguity in this table. If,
for a particular set of data, all three conditions give
negative outcomes on testing, then both R3 and R4 are
satisfied. Such apparent ambiguity is usually of no
consequence, as relationships exist between the conditions
which automatically resolve it. This situation is illus-
trated by Table 7 which is ambiguous if both conditions
are true. We see from the nature of the conditions that
this is impossible.

Table 7

Age < 18
Age > 65
GO TO

Y —
— Y

N
N

The matter of ambiguity in decision tables is a topic
requiring further work but is not of consequence in the
discussion which follows.

Without use of the decision table concept the logic
embodied in Table 6 would be presented as a flowchart.
There are a number of possible flowcharts that could be

Table 5
TABLE

CAR(A) = ' x '
CAR(A) = ' + '
CAR(A) = ' - '
CAR{A) = '/'
CAR(A) = ' t '
CAR{B) = '0'
CAR{B) = '1 '
CAR[C) = '0'
CAR(C) = '1 '
CAR(R) := '0'
CAR(R) := CAR(B)
CAR(R) := CAR(C)
CAR(R) :='oo'
CAR{R) := '1 '

Y

Y

X

Y

Y

I
I 1

 X

Y

N

Y

X

Y

Y
N

X

Y

Y

Y

X

Y

Y

N

X

Y

N

Y

X

Y

Y

X

Y

Y

X

Y

N

Y

X

Y

N

Y

X

Y
Y

X

Y

Y

X

Y
N

Y

Y
N

Y

X —

138

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024



Decision tables

(a) (b) (c)

Fig. 5

drawn to give the required logical outcomes. Three of
these are given in Fig. 5.

They embody the same logical consequences but differ
in the procedures they specify for arriving at the out-
comes. Whilst all giving the correct result these pro-
cedures may not be equally good from the point of view
of store requirements and program run time. For
example, suppose C,, C2 and C3 are tests which each
requires the same amount of store, then the implementa-
tion of 5(a) or 5(b), each of which requires the coding of
four tests with five transfers of control, will be more
economical of store than 5(c) which requires five tests to
be coded, i.e. a 25% increase. If, however, economy in
the use of store is not vitally important but it is essential
to minimize run time, and it is known that R3 will occur
much more frequently than any of the other outcomes,
then Fig. 5(c) must be the preferred implementation.
In this case only two tests (C2 and C3) will have been
carried out in deciding that R3 is the condition that holds,
whereas implementation of either 5(a) or 5(6) means
that three tests will be carried out. 5(c) can therefore
give approaching 33 % economy of run time over 5(a)
or 5(b). If the times to test the data for the conditions
are not equal then 5(c) could give an even better saving.
This, for example, would be the case if some of the
conditions were not simple arithmetical comparisons
between quantities in core store but asked whether codes
were members of reference lists some of which, perhaps,
are not immediately available in core. Similarly,
although making the same demands on the store for
program space, 5(a) will be a better procedure to
implement than 5(b) if R4 is the most frequent outcome.
On the other hand 5(b) will very probably be better than
5(a) if R2 is a very frequent outcome.

It is not the purpose of this paper to attempt an
analysis of the implementation of a decision table in
terms of selecting the best flowchart, but only to attempt
to exhibit the problems and considerations involved.
What does seem clear is that there is scope for software

development which will achieve this in a much more
precise and effective way than hitherto. The burden on
the Computer Applications Scientist (for want of a term
which does not introduce artificial distinctions into the
profession!) would then be to provide the logical rules
for processing in decision table form together with
expected frequencies of outcomes. Note that the best
implementation of a particular table in one installation
may not be the best in another. This is because the
suitability of the implementation is a function of the
statistical properties of the data on which it is to operate.
These will differ in different installations even though the
logical requirements may be identical.

The transformation of a decision table with associated
information into the "best" (in some sense) flowchart
must still be regarded as a field for research. It should
be emphasized, however, that this need in no way
inhibit the every day use of decision tables by pro-
grammers. These tables give clarity and precision and
are an aid to arriving at a near optimum procedure.
For example, suppose the outcomes in Table 5 occur
with frequencies of 10 %, 40 %, 45 % and 5 % respectively,
and that all three conditions take an equal time to test.
Suppose also that run time is all important. The state
of the art is such that a formal algorithm cannot yet be
stated which guarantees to produce the best flowchart.
Most programmers, however, could produce a reasonably
good practical solution. It is suggested that the reader
should try this example. Note that a flowchart can be
found that is better than all three of Fig. 5.

Rule mask techniques of implementation
The previous section discusses the implementation of

a decision table in terms of conversion to a conventional
form of program. A fundamentally different approach
which might be regarded as semi-interpretive has been
described by Kirk (14) and discussed further by
King (12). This involves the expansion of the condition
section of the table to limited entry form (if not already

139

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024



Decision tables

in that form) and its representation in the program as
two binary matrices, the mask matrix and the decision
matrix. The program operates by representing the out-
comes of the condition tests as a binary vector. This is
multiplied logically, element by element, with a column
of the mask matrix and the result tested for equality
with the corresponding column of the decision matrix.
There will be equality if the rule is satisfied and
inequality if it is not. The rules are tested successively
until one is found which is satisfied. If none are satisfied
then the Error or Else outcome is obtained.

The rule mask technique is illustrated using Table 6.
The mask matrix, M, is obtained by representing
pertinent conditions (the Y's and N's) by 1 and non-
pertinent conditions by 0; the decision matrix, D, by
representing the yes conditions (the Y's) by 1 and all
others by 0. Thus for Table 6 we would have the
matrices shown in Fig. 6.

1

1
1

M
1
0
1

0
1
1

1]
0

0

"1
1
0

D
1
0
1

0
0
0

0
0
0

Fig. 6

Suppose the first condition, C1; held but C2 and C3 did
not hold when testing a particular set of data: then we
would obtain the vector shown in Fig. 7(a).

0
0
0

(*)
Fig. 7

Logical multiplication with the first column of M would
leave this unaltered, and we do not get equality on com-
parison with the first column of D so that the first rule
is not satisfied. Similarly logical multiplication with the
second column of M would leave the vector unaltered,
there is not equality with the second column of D and
so the second rule is not satisfied. However, logical
multiplication with the third column of M produces the
vector of Fig. 7(6). This is equal to the third column of
D and so the third rule is satisfied. Note that at each
stage it is the original vector derived from the data
which is used in the logical multiplication.

The principal disadvantage of the technique as
described by Kirk (14) is that all conditions have to be
evaluated to construct the data vector before any rule
can be tested. King (12) describes how this disadvantage
can be circumvented and the run time of such "rule-
mask" programs thereby materially improved. The
relative value of the rule mask technique as opposed to
the more conventional approach remains an open
question. It does appear to have advantages where
there is apparent ambiguity and may prove very satis-
factory for large tables. Also economy of object

program size will be achieved if a program contains a
number of tables since the binary matrices can be
concisely stored and will serve as arguments to a section
of program to carry out the procedure described above.

Bibliography
There is some very readable introductory and illustra-

tive material (3, 4, 8) which the reader not familiar with
the concept of decision tables is recommended to consult.
In particular the article by Grad (8) contains two
interesting examples and, although published as long
ago as 1961, some remarks on future developments
which are still relevant. The article by Dixon (4) is a
good introductory presentation of the case for using
decision tables in preference to flowcharts whenever
practical.

Two of the earlier references (4, 11) give an intro-
duction in terms of TABSOL which was an experimental
tabular language developed for GE machines. This
uses a different notation from that now generally
recognized and presented in this paper. Evans (6),
although not very readable as an introduction, gives
considerable detail of how tabular methods were being
used in his company at the time of writing, including
some actual examples of the documentation.

The reader considering applying decision tables in an
engineering context is strongly recommended to consult
Nickerson's paper (18). This describes an actual appli-
cation using the LOGTAB language which was developed
for the IBM 704. The introductory paper (3) also
introduces the LOGTAB notation and could usefully be
read as a preliminary to Nickerson's paper. There is a
natural use of decision tables in the context of Informa-
tion Retrieval by Larsen (15). It is worthy of note, and
a sign of progress, that this is the first publication
(known to the author) making use of decision tables and
not specially commenting on the fact.

Anyone familiar with FORTRAN is very strongly
recommended to read the Rand publication by
Armerding (1). This describes FORTAB which essen-
tially is the FORTRAN language with a quite extensive
and sophisticated decision table facility added to it.
This publication is not only descriptive but is also a
manual for writing FORTAB programs. A processor
exists for FORTAB for the IBM 7090 which operates
on the basis of translating the decision table features in
the language into normal FORTRAN from which there
is then the usual compilation.

Two Rand Corporation publications (20, 21) describe
and discuss DETAB-X which is a version of COBOL
with extensive tabular features. These, however, suffer
from some irksome rules concerning completeness and
redundancy. The rationale for these rules is given by
Pollack (22) in an early attempt to do some rigorous
analysis on the condition section of decision tables.
DETAB-X was designed by the Systems Group of the
CODASYL Development Committee in the early
sixties. The work was regarded as experimental, and a

140

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024



Decision tables

revised version has now been developed and is known as
DETAB-65. A DETAB-65 processor for the IBM 7090
is available. This is written in COBOL, translation being
from DETAB-65 to normal COBOL which is then
compiled.

There are a number of papers useful to those interested
in converting decision tables to conventional branching
programs of the type discussed previously, whether the
intention is to include the facility in a compiler, to write
a pre-processor of the kind used for FORTAB, or to set
up a routine clerical process for use by the programmer in
performing the conversion manually. Egler (5) gives a
fairly simple algorithm which ignores any statistics on
rule frequencies but nevertheless was thought by its
originator to minimize both store requirements and
processing time. It was pointed out by Montalbano (17)
that the procedure does not always achieve this.
Pollack (19) has presented two algorithms of a type
similar to Egler's, one aimed at the problem of minimiz-
ing store requirement, the other at minimizing object
program run-time. In a letter (which could well be
entitled "Pollack's procedures refuted") Sprague (25)
has pointed out that neither of these algorithms achieve
their objective in every case. In an earlier paper
Montalbano (16) also gives similar types of algorithm.
There is also an attempt by Press (23) whose paper
includes an interesting discussion of Decision Table
Languages and some comments on ambiguous tables.

It now seems clear that in general it is not possible to
achieve both minimum run-time and minimum store
requirement by the same procedure as Egler attempted.
Except for small fairly straightforward decision tables
the program which achieves minimum run-time will be
different from that which minimizes store requirement.
It also seems clear from the recent work of Reinwald
and Soland (24) that algorithms which are guaranteed
to produce the optimum (in some sense) flowchart from
a given decision table are likely to be fairly complex and
certainly not suitable for manual processing. Pro-
Bibliography and References

(1) ARMERDING, G. W. (1962). "FORTAB: A Decision Table Language for Scientific Computing Applications", Mem.
RM-3306-PR, Rand Corp., Santa Monica.

(2) BROYDEN, C. G. (1965). "Solving Nonlinear Simultaneous Equations", Maths, of Comp., Vol. 19, p. 577.
(3) CANTRELL, N. H., KING, J., and KING, F. E. H. (1961). "Logic Structure Tables", Comm. ACM, Vol. 4, p. 272.
(4) DIXON, P. (1964). "Decision Tables and their Application", Comput. Automat. (April 1964), p. 14.
(5) EGLER, J. F. (1963). "A Procedure for Converting Logic Table Conditions into an Efficient Sequence of Test Instructions",

Comm. ACM, Vol. 6, p. 510.
(6) EVANS, O. Y. (1961). "Advanced Analysis Method for Integrated Electronic Data Processing", IBM General Information

Manual F20-8047.
(7) FISHER, D. L. (1966). "Data, Documentation and Decision Tables", Comm. ACM, Vol. 9, p. 26.
(8) GRAD, B. (1961). "Tabular Form in Decision Logic", Datamation (July 1961), p. 22.
(9) GRINDLEY, C.B.B. (1966). "Systematics—A non-programming language for designing and specifying commercial systems

for computers", The Computer Journal, Vol. 9, p. 124.
(10) HOYLE, F. (1963). "The Relative Abundances of Ni58 and Ni«>", Transcript of IBM Symposium on Computers in Research

and Education, IBM (UK).
(11) KAVANAGH, T. F., and ALLEN, M. "The Use of Decision Tables", Proc. of 1963, Conf. of International Data Processing

Management Assn. (Data Processing VI), p. 318.
(12) KING, P. J. H. (1966). "Conversion of Decision Tables to Computer Programs by Rule Mask Techniques", Comm. ACM,

Vol. 9, p. 796.

141

cedures of the type proposed by Egler, Pollack, Montal-
bano and Press should not, therefore, be dismissed out
of hand because they do not always achieve the absolute
best. It may be that the relative simplicity of these
procedures compensates for their not always producing
the optimum, for even when they produce a non-
optimum solution it is likely to be a fairly good one.

The most rigorous work done on converting decision
tables to conventional programs is that of Reinwald and
Soland (24). They assume (as most other workers have
implicitly taken for granted) that all conditions are
testable whichever rule holds, and in the cited paper
give an algorithm which produces the program having
minimum execution time. The only drawback is that
their algorithm requires not just the probabilities of
outcome for the various rules but a complete knowledge
of the probability structure involved. In practice this
may not always prove readily obtainable.

A different approach to translating decision tables to
program is the rule mask technique discussed previously.
This is simply explained by Kirk (14) and a proposed
development of it is given by King (12). Veinott (27, 28)
makes some proposals similar to Kirk's (and suffering
from the same drawbacks) for programming using the
common languages. He also includes some observations
on the relative merits of limited entry and extended
entry tables.

An interesting paper by Fisher (7) uses decision tables
as one element in the context of a comprehensive method
of documentation. It is claimed that this method greatly
facilitates amendments and alterations by maintenance
programmers. Anyone concerned with documentation
problems is strongly recommended to read this paper.
Grindley (9) includes a restricted form of decision table
as an element in a proposed program specification
system. The restriction arises from attaching significance
to the order in which the conditions are stated. The
notation used is also non-standard. Grindley's paper
has been discussed in detail in (13).

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024



Decision tables

(13) KING, P. J. H. (1967). "Some comments on Systematics", The Computer Journal, Vol. 10, p. 116.
(14) KIRK, H. W. (1965). "Use of Decision Tables in Computer Programming", Comm. ACM, Vol. 8, p. 41.
(15) LARSEN, R. P. (1966). "Data Filtering Applied to Information Storage and Retrieval Applications", Comm. ACM, Vol. 9,

p. 785.
(16) MONTALBANO, M. (1962). "Tables, Flowcharts and Program Logic", IBM Systems Journal (Sept. 1962), p. 51.
(17) MONTALBANO, M. (1964). "Letter to Editor (Egler's procedure refuted)", Comm. ACM, Vol. 7, p. 1.
(18) NICKERSON, R. C. (1961). "An Engineering Application of Logic Structure Tables", Comm. ACM, Vol. 4, p. 516.
(19) POLLACK, S. L. (1965). "Conversion of Limited Entry Decision Tables to Computer Programs", Comm. ACM, Vol. 8,

p. 677 (also as Mem. RM-4020-PR, Rand Corp., Santa Monica, May 1964).
(20) POLLACK, S. L., and WRIGHT, K. R. (1962). "Data Description for DETAB-X", Mem. RM-3010-PR, Rand Corp., Santa

Monica, March 1962.
(21) POLLACK, S. L. (1962). "DETAB-X: An Improved Business-Oriented Computer Language", Mem. RM-3273-PR, Rand

Corp., Santa Monica, Aug. 1962.
(22) POLLACK, S. L. (1963). "Analysis of the Decision Rules in Decision Tables", Mem. RM-3669-PR, Rand Corp., Santa

Monica, May 1963.
(23) PRESS, L. I. (1965). "Conversion of Decision Tables to Computer Programs", Comm. ACM, Vol. 8, p. 385.
(24) REINWALD, L. T., and SOLAND, R. M. (1966). "Conversion of Limited Entry Decision Tables to Optimal Computer

Programs I: Minimum Average Processing Time", Jour. ACM, Vol. 13, p. 339.
(25) SPRAGUE, V. G. (1966). "Letter to Editor (On Storage Space of Decision Tables)", Comm. ACM, Vol. 9, p. 319.
(26) SCHMIDT, D. T., and KAVANAGH, T. F. (1964). "Using decision structure tables", Datamation, Vol. 10 (Feb. and March

1964), p. 42 (Pt. I) and p. 48 (Pt. II).
(27) VEINOTT, C. G. (1966). "Programming Decision Tables in FORTRAN, COBOL, or ALGOL", Comm. ACM, Vol. 9, p. 31.
(28) VEINOTT, C. G. (1966). "Letter to Editor (More on Programming Decision Tables)", Comm. ACM, Vol. 9, p. 485.
(29) WILKES, M. V. (1965). "Lists and why they are useful", The Computer Journal, Vol. 7, p. 278.

Book Review
Computer Simulation Techniques, by T. H. Naylor, J. L.

Balintfy, D. S. Burdick and Kong Chu, 1966; 352 pages.
(London and New York: John Wiley and Sons Ltd., 72s.)

The literature on simulation is full of descriptive accounts of
applied problems which have been successfully solved only
when a digital computer has been used to simulate the real
system. It also abounds with detailed technical articles on
the generation of pseudo-random numbers and the efficient
use of these to produce random variates from different
probability distributions. But apart from descriptions of
several specific computer simulation languages comparatively
little has been written on how to simulate.

This book is an attempt to fill the gap by developing a
"methodology for planning, designing, and carrying out
simulation experiments". Chapter 1 presents an interesting
account of simulation and its relationship to the scientific
method from a philosopher's viewpoint, marred only by an
unnecessary attempt to classify simulation models. In
Chapter 2 a nine-step procedure for planning simulation
experiments is proposed and discussed. The procedure
suggested is admitted to be arbitrary, but does provide a
suitable framework for the remaining chapters of the book
which, the authors claim, place "particular emphasis on those
aspects of computer simulation which are not treated in
existing textbooks". Unfortunately the book does not fully
substantiate this claim, though much credit is due to the
authors for attempting to systematize some vague but
important areas of simulation design and analysis.

Chapter 3 is concerned with the generation and testing of
sequences of pseudo-random numbers. It gives a particularly
good account of congruential methods and includes a brief
but useful appendix on elementary number theory. Chapter 4
presents the usual methods of generating stochastic variates,
viz. inverse transformation, rejection and the method of
mixtures. Methods for sampling from all the standard distri-
butions follow, each being preceded by a laboured description,

which must surely be unnecessary since in the preface the
authors assume some knowledge of mathematical statistics
in their readers. FORTRAN subroutines are given for the
generation procedures presented. It is unfortunate that so
little is included on generating correlated variates.

For those who believe that simulation techniques were
invented by, and exist to solve the problems of, frustrated
queueing theorists, examples are given in Chapters 5 and 6
of simulation models applied to queueing, inventory and
scheduling systems, and to the firm, industry, and the national
economy as a whole. Several useful exercises for the reader
are given at the end of both these chapters, although most
assume a working knowledge of FORTRAN. The authors'
preoccupation with FORTRAN throughout the book is,
perhaps, the feature most likely to irritate ALGOL pro-
ponents. This is particularly true of the inevitable chapter
on simulation languages which follows. The reviewer found
this the most disappointing chapter in the book. In spite of
detailed descriptions of several languages (all American in
origin) no critical comparison is made; and whereas GPSS II
is described in 30 pages (reprinted verbatim from the IBM
Systems Journal), GSP, ESP and CSL are together dismissed
in a single page.

Chapters 8 and 9 discuss the problem of verification and
design of simulation experiments respectively. The former
is in the nature of a philosophical diversion and is too brief
to be really useful. Design of experiments receives more
attention but the chapter is in effect little more than a valuable
literature survey of the area.

The references and bibliography which follow each chapter
are one of the strong points of the book; even if the reader
may sometimes be disappointed in the content of a section,
he is never ignorant of where to look for further guidance.
This book is ambitious in its aim and in several respects falls
short of achieving it. It is nevertheless a worthwhile addition
to the potential simulator's bookshelf. j Q WILKINSON

142

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/135/336777 by guest on 13 M
arch 2024


