
Seasonal adjustment and forecasting in the presence of trend

By R. W. Hiorns*

A general linear statistical model for simultaneous seasonal adjustment and trend estimation is
considered for one and two term deterministic trend functions. Explicit estimates of the para-
meters and variances are derived in a convenient computational form from which the properties
of these estimates become apparent. In connection with possible uses of the model for fore-
casting, the Smallest Neighbourhood (SN) is introduced, within which the trend is assumed to be
either linear or representable by a single term. Examples are given to show that simple techniques
in certain situations may yield accurate forecasts in return for a comparatively modest amount
of computational effort. A procedure "season" is given which calculates, for any general one
term trend function, estimates of seasonal and trend constants together with standard errors and
provides predictions, also with standard errors, for any required period.

1. Introduction
Simultaneous seasonal adjustment and trend estimation
of an economic time series was suggested as long ago as
1937 by Arne Fisher and the technique would still seem
to have advantages (see Lovell, 1963) over ratio-to-
moving average approaches which gained currency in
the pre-electronic computer age. This paper is not con-
cerned with any controversy over possible methods, but
assumes that the simultaneous adjustment and estimation
has merits in certain situations and is therefore worthy
of detailed study for some special cases. Situations to
be considered are those where the time series may be
represented by means of a model in which the trend,
seasonal and random components may be arranged
linearly (with respect to the parameters, or more briefly,
say the model is parameter linear). The model may then
be written

y = DZ + So + e (1)

where y is a vector of N observations {>>,•}, e is the asso-
ciated vector of errors (these will be assumed independent
with mean zero and constant variance, w), D and S are
matrices of trend variables and seasonal variables and
S and a are the associated vectors of trend and seasonal
constants. The matrix D contains in its 7th row values
of the trend variables corresponding to the y'th obser-
vation whilst the matrix S, in its 7th row, will contain
only zeros except for a unity element in its rth column
where i is the season of the 7th observation, i.e.

1 = j — rm (2)

if m is the number of seasons, for some integer r in the
range 0 < r < (N — m)/m, r being the number of com-
plete years in the data before that containing the jth
observation.

As is well known, the estimates of the parameters in
this model are linear, unbiased and have minimum
variance because of the above error assumptions and
the linearity of the model. The estimates may be
expressed (see Jorgenson, 1964) in the form

S - D(D'D)- lD']S}~ lS'

Electronic Computing Laboratory, University of Leeds.

& = - D{D'D) D{D'D) (3)

It would seem (see e.g. Gregg et al. (1964)) that linear
or simple exponential trends might have some practical
importance and these, or any other one-term trend model
with a single deterministic component allow a convenient
explicit form for the estimates to be given. Simple forms
are also obtained in the following sections for models
whose deterministic component consists of two terms.
The fitting of certain polynomial and non-linear models
becomes greatly simplified when these one- or two-
term trend representations are applicable. Models of
this type include the Gompertz, logistic and other
modified exponential trend functions.

It is not suggested that in reality economic or other
time series are always immediately representable by such
simple forms, but occasionally, after suitable trans-
formation of the data, these models may be of value.

2. General one-term trend
Suppose that the deterministic component contains

one term only, the model then simplified to

y=fS + Sa + e (4)

where/is a vector of values of the trend function and 8
is the scalar trend constant. In the simplest case of
linear trend/would contain values of the time variables
and these could be the first N consecutive integers.

Corresponding to (3) the estimates of the parameters
are now

mi2
S'f \ S'S

S'y

These may be written more explicitly after defining the
following quantities:

F=f'f= .2/? where/ = {/}},

T=f'S so that T = {T,} = {"£'/m+/ \,

Y=S'y so that Y= {Y,} = (VjVm+( ]•»
lr=0 J

(6)
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YP=f'y = ^

and p = / ' ( / - S(S'S)- = F- S - '

where nt is the number of observations in y relating to
the season i.

The inverse matrix in the above equation may then
be obtained in the form

Forecasting

3. Forecasting

Use of the estimates, (8) and (9), and the standard
errors and covariances (10) and (13) can provide fore-
casts together with standard errors. Suppose we require
to estimate the value of y, y0, at t0 where to = rm + i
for some integers r and i where 1 < i < m. If we use
the present model to obtain the expected value of y at
t0, this is

B'

where A is scalar, B is a row vector of m elements and
C is a square matrix of order m. Furthermore,

A = 1/p, B = {- and if C = {C/y}

then C -

Using this inverse or otherwise the estimates of S and a
are

(8)

(9)

n,

and d, = - (Yf-

for i = 1,2,. . ., m.

The inverse (7) provides the standard errors of these
estimates

as s.e. (B) = V(w/p)
(10)

where w is the estimate of w the variance of the errors,
obtained by squaring the residuals of the fitted model
and dividing by N — m — 1. Alternatively, if

e = y—f§ -S6

_ e'e _ y'y - YFB - Y'a
then

N — m- 1 N—m-l

(11)

(12)

Also important are the covariances between these
estimates which are given by

-wT,
pnt

cov (a, »j) =
(13)

Assuming normality for the distribution of e, the signi-
ficance of the trend may be easily tested by noting that
from (8) and (10) the quantity

s.e. (B) V(pw)
(14)

follows the ?-distribution with (N—m—1) degrees of
freedom.

(7) The estimated variance of y0 is

var (j0) = var (d,- + Bj{t0))

= var (a,.) +M)2 var (B) + 2/(/0) cov (a,., B)

In the special case of data representing complete
years some properties of this estimate of variance may
be noted. This estimate is a minimum when f(t0) is at
or is as close as possible to its mean value. For simple
linear trend, as would be expected, this variance is least
at the midpoint of the range of observation. Other
properties will be discussed later.

In applications where the deterministic component is
parameter non-linear, or beyond the scope of a single
term, there are two possible approaches to the problem
of analysis or forecasting. Where possible it would
seem preferable to extend the model by the addition of
further terms, and this would probably be the first
approach. This may involve a non-trivial estimation
problem and may not produce suitable standard errors
for estimates or forecasts. A second approach might
then be adopted. This is to consider only a small
neighbourhood of the present time in the series and to
assume the deterministic component to be linear with
time in this locality. There are two direct implications
of this approach; one is the computational simplicity
and the attendant suggestion that the analysis can be
repeated more frequently than otherwise, and the other
is the preclusion of anything but short-term forecasting.

The order of the above approaches is questionable.
There is the usual objection to any generalization in the
analysis or forecasting related to such series, that appli-
cations tend to be so special that each should be treated
separately on its own merits. This is specially pertinent
in the second approach which refers to a vague "small
neighbourhood". How small this can be must be judged
in practice by visual and other means unless, of course,
the smallest possible neighbourhood is taken in all cases.
To do this would maximize the chance of being right in
applying a linear model in suspected non-linear situa-
tions but also it would maximize the standard errors of
all the estimates concerned and therefore of any pre-
dictions when the deterministic component was in fact
linear. These considerations are resumed in Section 6,
when the smallest neighbourhood is treated in detail.
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4. Linear trend
Here consider the model (4) with

/= (17)

so that observations correspond to times 1, 2 , . . ., N.
From (6)

F= ZJ2 = W(N + 1) (2N + 1)

and T, =
r=0

+ 0 = lmn,(n, — 1) + /«,.

(18)

(19)

Where the data consists of complete years n-t = n for
all n and N = mn, these expressions reduce considerably
so that after some algebra

^^m3n(n2- 1). (20)

Referring back to (10), the variances of these unbiassed
estimates will be seen to converge monotonically to
zero as n tends to infinity, demonstrating in a simple
manner the consistency of these estimates. Further, if
n = 1, the estimates have infinite variance which is
intuitively satisfactory for estimates based on one year's
data.

There are some further comments which can now be
made about the relation between the variances of the
seasonal constants. From (19), T, is increased linearly
with / so that from (10) the relation between the variances
of adjacent seasonal constants is

>var(d,_!) (21)

for all / in the range 1 < i < m. More precisely, the
difference between adjacent estimates is

wvar (a,) - var (0f_x) = -1 (mn - m - 1 + 2i). (22)
rn

Returning to the variance of a predicted value, in this
case from (16)

var (Vn) =

where t0 = rm + »"• Using (20) this variance becomes

var CP0) = w[(l/n) + 3(« - 1 - 2r)2/(mn(n2 - 1))] (23)

QUARTER

1
2
3
4

1958

191
190
180
178

Table 1

Births in

1959

192
198
187
173

year ('000)

1960

198
199
198
188

1961

204
208
205
187

1962

221
216
207
196

The most striking feature of this quantity is its inde-
pendence of /, the seasonal suffix. This implies that pre-
dictions for any year will have the same variance, what-
ever the season. Furthermore, the variance of a pre-
diction for the rth year is less than that for one in the
following year by an amount

— (n - 2 - 2r). (24)

This is of course negative if r < (i)w — 1.

In the example below, quarterly data over a five year
period is used to estimate the four quarterly constants
together with the slope of simple linear trend. The model
is

y = tS + Sa + e (25)

where t' = (1,2,. . ., 20), S is the scalar slope,

S" = /I 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0N

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

(26)

a' = (ai, a2, cr3, CT4),

where o-,- is the constant for the ith quarter y, is the vector
of observations and e is the vector of errors.

The numbers of live births recorded in England and
Wales for the years 1958-62 are given in Table 1. (Taken
from the Registrar General's Quarterly Return of Births,
Deaths and Marriages.)

In the calculations detailed in Table 2, for convenience
this data is reduced by subtraction of 200 from each
entry. The required intermediate quantities are given
in the columns on the right.

'58

g
- 1 0
- 2 0
- 2 2

OBSERVATIONS

'59

- 8
- 2

- 1 3
- 2 7

'60

- 2
- 1
- 2

- 1 2

'61

4
8
5

- 1 3

Table 2

Calculation of estimates

'62

21
16
7

- 4

(0
Yt

6
11

- 2 3
- 7 8

(2)
T,

45
50
55
60

(3)
Yi Ti

270
550

-1265
-4680

(4)
ST,

72
80
88
96

(5)
Yi-dTi

- 6 6
- 6 9

-111
-174

(6)

°i

- 1 3
- 1 3
- 2 2
- 3 4

•2
•8
• 2

•8

-5125
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From the formulae (8) and (9),

p = A . 43. 5 . 24 = 640

YF = - 9 . 1 - 10.2 - 20.3 - 22.4 - 8.5 . . . - 4.20

& = (-
1024
640

= 1-60

so that, using (19), columns (4)-(6) in the table may be
completed. The seasonal constants d, are in column (6)
and the residuals e may be obtained from these constants
and from S, the slope estimate. The residuals are as
follows:

2-6
0-6
2-6
6-4

- 2 - 8
2-2

- 2 0
- 5 0

- 3 - 2
- 3 - 2

2-6
3-6

- 3 - 6
- 0 - 6

3-2
- 3 - 8

7-0
1 0
0-2

- 1 - 2

From the form of the model the check that the rows sum
to zero is used to verify the computation of the estimates
and residuals. The variance of the residuals is estimated
by their sum of squares divided by 20 — 4—1 = 15
and this gives

226-20
iv = 15

= 15-08.

The calculation of the standard errors of the estimates
is now straightforward using (8) and (9) leading to

S == 1-60 + 0-15 d , =
d, =

-13-20 ± 2-22
-13-80 ± 2-32
-22-20 ± 2-42
-34-80 + 2-53.

Predicted values for the four years immediately before
and after the period covered by the above data are given
in Table 3, together with standard errors. The latter are
obtained from formula (15), and being the same for
any year, are given at the foot of each column.

Table 3 also gives, where available, the errors or
deviations of the observed values from the predicted

values above. From the pattern and magnitude of these
errors, the non-linearity over the wider range is obvious.
The backward projection to 1954 well enough illus-
trates the danger of extending the range of prediction
beyond that of observation.

5. Two-term trend

Polynomial trends have been commonly suggested
and, in general, explicit estimates cannot be obtained
for these. However, there are still some important
special estimates which it may well be worthwhile to
give directly. Consider two-term components so that
in (1),

DS=flS1+f2S2 (27)

where j \ and f2 represent any simple (non-parametric)
functions of time.

Extending the previous notation naturally, the esti-
mates of the present constants, corresponding to (5),
are:

d,

§2

d,
d2

?m_

Fx

F\2

Tu

Tl2

j \ m

vhere
N

7=1 V'

A

Fl2

F2

T2l

T22

T2m

2

Tn

T2l

n,
0

0

N

7 = 1

Tl2

T22

0
« 2

0 n

Tlm

T2m

0
0

nm

~YFl~
YF2

Yt

Ym

n<— 1

r = 0
(28)

YFl= S V i y , YF2= ^yj
ni—l

and, as before, Y, = £ yrm+,-.
r=0

Table 3

Predicted values and their errors
QR. '54 '55 '56 '57 '63 '64 '65 '66 '70

1
2
3
4

standard
error

1
2
3
4

162-8
163-8
157-0
146-0

4.494

11-2
11-2
1 0 0
1 1 0

169
170
163
152

•2
•2
• 4

•4

3-798

- 0
0
3
5

•2
•8
•6
•6

175
176
169
158

•6
• 6

•8
•8

3-135

3
5
4
4

182-0
1830
176-2
165-2

2-532

Deviations:

•4
•4
•2
•2

2-0
2-0
3-8
8-8

220
215
213
203

• 4

•0
•6
•6

2-532

observed

1
5
1

- 3

—

•6
•0
•4
•6

226-8
221-4
220-0
210-0

3-135

predicted.

-7 -8
6-6
2-0

-60

233-2
227-8
226-4
216-4

3-798

-16-6
— 14-6
- 1 3 - 8
-190

239
234
232
222

• 6

•2
•8
•8

4.494

265
259
258
248

•2
•8
•4

•4

7-420
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The direct estimates are readily obtained after stages
of algebraic elimination and back substitution; these are
conveniently set out below.

(i) Elimination
m y*2

Let F[ = Fi - S — ,
i=i ni

" TtlT,.

1=1

TuY,
n, '
(29)

V2= t2 — Zi E^
i=l «i ^1

T V C' V'
- _ v x. 2i*i *\2lFl
F2 — * F2 — Zu n, F[

and

(ii) Back substitution

Directly S2 = YF2/F2.

If YFl = ( r ; , - S2F,'2) t henS ,= (30)

and Sir,, - S2r2,).

The estimates given here allow a straightforward
extension to the problem of fitting models with non-
linear deterministic components. In particular, the
modified exponential model may be mentioned. Stevens
(1951) showed that the iterative process for three-
parameter asymptotic regression models with a single
unknown asymptote reduces to iteration in only the
non-linear parameter. This process is described in
Hiorns (1965). The use of this type of model here
results in an iterative process with the ratio of the Ss
in (30) above as the correction to the non-linear para-
meter at each stage. Clearly other interesting models
can be dealt with in this straightforward manner.

6. The smallest neighbourhood (SN)
In order to leave at least one degree of freedom for an

estimate of the variance, the total number of points N
must be at least m + 2 for a one-term deterministic
component and an /n-term seasonal component.

The smallest neighbourhood (SN) is then that enclosing
just N = m + 2 observations. Suppose that the trend
function values are / , , / 2 , . . ., fm+2- In this case,
«i = n2 = 2, «3 = «4 = . . . = nm = 1. Also

fi +fm+i 0" = 1,2)T =

Define, for convenience, an operator [ ] as

Now /> = (i)([/i]2 + [/2]
2) and, using the previous

relations, the estimates of the parameters become

$ = (31)

Confidence

An

1
2
3
4
8-8

Table 4

interval

kz

0
- 1
—2
- 3
- 7 - 8

multipliers

a

0-39
0-72
0-82
0-87
0-95

'-sc/;+/»+/) (/=i,2)
\ 3̂ — /̂3 (3 < I < W)

w = (i){b.]2 + b2][/2i)2)
+ [/2]

2 /•
The estimate ym+3 of the month following the SN

may now be obtained by direct substitution into equation
(15) and the variance of this estimate now simplifies to

2[/3]2

varCPm+3) =

An even simpler model may be obtained by taking the
trend function / to be linear with time. Suppose / , = /,
the estimates then are

S = (b , ] + [y2])l2m

i + ym+ d - 8(« + 20} (/ = 1,2,)
\

(32)

The estimate for the month following the SN is now
simplified greatly to

and its variance is var (ym+ 3) = 2iv and its standard
error takes the absolute value of (b i ] — b2])/\/2-
Confidence limits for the estimate ym+3 may then be
seen to have the simple form

ym+3 + ^ ib i ] + k2[y2],ym+3 + k2[yt] + fc,[j2]
where kt and k2 are the constants i ± ita, if ta is the
appropriate f-value with one degree of freedom, so that
&i + k2= 1. Some values for these constants with the
probability a of observations occurring in the interval
are given in Table 4.

From these values, the probability is 0 • 39 that the true
value lies between y3 + [;>,] and y3 + [y2]. Similarly,
the probability is 0-72 that the true value lies between
^3 + 2bi] — [y2] and y3 + [yt] — 2[y2].

The test for linearity given in equation (14) for this
simple case reduces to comparing the ratio

(b.] - b2])
with the values 6-31, 12-7 and 63-
5 % and 1 % significance levels.

7 for / at the 10%,
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Using only four values to estimate ym+3, the whole
procedure is rough and obviously requires much care in
application. It is probably fair to suggest that slowly
changing, parameter nonlinear trend functions do occur
which are exceedingly tedious to handle by least squares.
Some of these would provide sufficient local parameter
linearity to make this "smallest neighbourhood" tech-
nique worthy of serious consideration for short-term
forecasting.

An example is now given showing how the SN tech-
nique, although computationally simple, might well be
effective as a forecasting aid in some situations. The
data used for this illustration is the airline passenger
data quoted by Brown (1959) and later used by Barnard
(1963). The results of applying two other forecasting
methods, adaptive forecasting and the Box-Jenkins
method, are compared in Table 5 with the SN technique.
In each case, forecasts were prepared each month, using
only previously observed data, for the following month
over the nine-year period, and the sum of absolute
errors each year is given in the table for each method.

7. Conclusion
The general theory for simultaneous seasonal adjust-

ment and trend estimation has been investigated in the
special cases of models whose deterministic component
consists of one or two terms. Convenient forms for the
estimates of seasonal and trend constants are obtained
with their variances, and properties of these quantities
are exhibited. The simplicity of these forms is an
attractive feature and this suggests their continuous use
in a moving fashion to follow short-term trend.

A single deterministic term would not usually be
adequate for more than a few years and the considera-
tions discussed above led to a "smallest neighbourhood".
This allowed just one degree of freedom for the esti-
mation of variances, a procedure which in general will
be harsh, but on occasion necessary. However, the real
situation may afford some compromise if linearity is
maintained for two or more years for then a "next
smallest neighbourhood" (NSN) may be considered.
The logical period here would be two complete years,
so that two observations are used for each seasonal
constant and a more satisfactory estimate of variance
would then become available.

Besides these two convenient neighbourhoods, other
alternatives might be considered. A possible situation
is that in which linearity is maintained for part of a time
series to be followed by a change to linearity according
to some new regime. Overall this situation would be
called non-linear, but the moving SN or NSN techniques
should work well when the point of change of regime
lies outside the moving neighbourhood. With this in
mind, it would seem that the SN would be optimal.
On closer investigation, however, the length of the
neighbourhood would be better related to the distance
between points of change of regime. For any regularity
in the spacings of these points (e.g. the natural time

Table 5
Comparison for forecasts for airline passenger data by

sums of absolute errors in twelve monthly forecasts

METHOD

YEARS

'52 '53 '54 '55 '56 '57 '58 '59 '60

Adaptive fore-
casting 61 149 110 77 54 96 210 140 156

Box-Jenkins 68 142 98 109 82 85 134 138 205
SN 109 126 100 110 78 105 170 142 215

between national elections) it would be necessary to
make the length of the neighbourhood considered a
parameter to be estimated on a given part of the time
series.

In general, in any situation it seems that a neighbour-
hood of optimal length might be selected to advantage.
Without some measure of non-linearity, however, it
would be difficult to cater for situations in advance by a
general rule regarding the choice of a neighbourhood.
In a given situation it is of course a trivial matter to
compare the forecasting performance of some alternative
techniques. This would be a natural and obvious
procedure for investigating the non-linearity of a given
series and the relation between this and the length of an
optimal neighbourhood.

This work suggests that other neighbourhoods might
be studied and clearly a "best neighbourhood" (BN)
according to some criterion for a given time series,
could be based upon early observations, and this
adopted for all later forecasting. The choice of the
criterion is not clear.

procedure season (y,m,fn,N,a,e,w,Pl, P2, pred, pe);
comment This procedure calculates, simultaneously,
estimates of seasonal and trend constants by multiple
linear regression and provides forecasts and errors for
a specified period. The model used has the demand
variable represented by a trend component, seasonal
component and random component combined additively.
The trend term is assumed to consist of a single function
whose values are supplied to the procedure in an array

/ [ I : N] where N is the number of observed values of
the demand variable, also supplied, in an array y[l : N].
These values correspond to consecutive time periods,
there being m seasons in a year, represented by m
seasonal constants, but N need not be a multiple of m.
N must satisfy N > m + 2. The number of observed
values for each season must be supplied in the array
n[l : / » ] .

Estimates are left by the procedure as follows: the
trend constant in a[0] and the m seasonal constants in
the remainder of the array a[0 : m\. Standard errors
for the constants are in e[0 : rri\. The residual variance
estimate is in w.

Forecasts {or predictions) are made for consecutive
time periods frem P\ to P2. These are left in pred
[PI : Pl\ and their standard errors in pe[P\ : P2];
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array y,f,a,e,pred,pe; integer array n;
integer m,N,P\,P2; real w;

begin integer i,j,k; real F, YF,p,q;
array T, Y[l : m\;
k:=0; YF:=F:=p:=q:=O;
for i : = l step 1 until m do
begin

T[i]:=Y[i]:=0;
for7:= 1 step 1 until n[i] do
begin

k:=k+UF:=F+f[k]\2;

end;

estimates:

sumsquares:

a[0]:=q/p;
for i: = l step 1 until m do

k:=0;
for /: = 1 step 1 until m do
for_/:= 1 step 1 until n[i] do
begin &:=fc+l;

w:=w+C[*]-fl[/]-a[O]x/[fc]) f 2
end;
w.=w/(N—m—1);

YF:=YF+y[k]xf[k]

pp[]UlVY,
q:=q-T[i]xY[i]/n[i];

end;

for /: = 1 step 1 until AM do
e[i]: =sqrt(e[i] X iv);

predictions: for k:= PI step 1 until P2 do
begin !:=i-mx(H)vm;

pred[k]:=a[i]+a[O]xf[k];
pe[k]:=Wx(l/nV]+(T[i]/n[i]

-/I0)t2/p);

end

end of season;
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Book Review (Continued from p. 134)

and organizational, are functioning properly, and this chapter
provides even newcomers to EDP with sufficient information
to carry out a detailed audit.

Reference is made to the verification of balance sheet and
profit and loss account items, and the suggestion is made that
here may be a field for the auditor to use special computer
programs, e.g. random sampling instead of a complete print-
out of a file: print-out reports of items which fail to meet
specified criteria. There are also two examples in some
detail of the use of special computer programs, one on a
large payroll application and the other in connection with the
verification of the valuation of a company's hire purchase
debtors. On the question as to whether an auditor has a
responsibility to examine computer programs it is clear that
the author has made up his mind that such a task is neither
a practical nor desirable approach, and he suggests the use
of test packs as a more practical method for an auditor to
satisfy himself about the validity and reliability of a client's
computer programs.

The preparation, use, and limitation of test packs are
referred to in some detail, followed by an example of their
use in relation to a sales system. Only valid data is used
and the processing is carried out by a duplicate copy of the
client's program. There is, however, no advice as to how to
check that the duplicate used is a true copy. The "pros" and
"cons" of these techniques are carefully weighed and the
reader is not discouraged from seeking further development.
Mr Pinkney concludes with these words, "The auditing of
computer applications is still at a comparatively early stage
and it has become clear, in the course of preparing this book,
that a great deal of further work remains to be done. It is
hoped that the suggestions contained in the preceding pages
will assist these further developments."

It is thought that this book will currently be of great
assistance both as a reference and a guide and will stimulate
future thought and work.

F. E. HINCHCLDT
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