Evaluating computer systems through simulation

By L. Rowell Huesmann* and Robert P. Goldbergt

A review of computer systems simulation is presented.

Existing and proposed programs for

simulating computer systems are described and recommendations are made about the desirable

characteristics of a simulator.

Attention is primarily focused upon those simulators that may

be used to study time-sharing, multiprogramming, and multiprocessing systems. It appears that
a higher order, special purpose simulation language is needed for simulating computer systems.
CSS and LOMUSS II seem to be representative of the most promising type of computer system

simulators.

As computer systems have grown in size and computer
implementations have grown in sophistication, it has
become more and more important to develop means for
evaluating different hardware and software configura-
tions both prior to and after installation. One approach
to such evaluation has been through digital computer
simulation of proposed computer systems.

To use simulation techniques in evaluating different
computer systems, one must be able to specify formally
the expected job mix and constraints under which the
simulated system must operate, e.g., operating time per
week. Equally important, one must carefully select a set
of characteristics on which the competing systems will
be judged. For different installations the most important
characteristics may well be different. Each system under
consideration is modelled, simulation runs are executed,
and the results are compared on the selected charac-
teristics.

Unfortunately, the ideal case seldom occurs. Often
the available information about the computer system’s
expected job mix is very limited. Furthermore, it is a
well-known fact that an installation’s job mix itself may
be strongly influenced both qualitatively and quantita-
tively by the proposed changes in the system. For
example, many of the difficulties with early time-sharing
systems can be attributed to the changes in user practices
caused by the introduction of the system.!®* When
statistics on job mix are available, they are often
expressed in averages. Yet, it may be most important
to simulate a system’s performance under extreme con-
ditions. Finally, it is often difficult to show that a
simulation is valid—that 1s, that it actually does simulate
the system in question.

Although the simulation of computer systems on
digital computers is a difficult task, it appears to be an
increasingly popular method for evaluating computer
systems. Perhaps the foremost reason for simulation’s
popularity is the lack of a viable alternative. Several
recent papers®>42 have proposed the use of Markov
models as one alternative. Each computer system is
represented as a Markov system, and its steady state is

* Carnegie Institute of Technology, Pittsburgh, Pennsylvania.

used to calculate performance statistics. Unfortunately,
the specification of each system as a Markov chain and
the estimation of the transition probabilities are tedious
tasks which may be more expensive than several simu-
lation runs. Aside from Markovian methods, there
does not seem to be any formal method of modelling
computer systems which can produce results comparable
to simulation.

The remainder of this paper will review some of the
more promising efforts to build simulators for time-
sharing, multiprogramming, and multiprocessor systems,
and attempt to extract from these programs the charac-
teristics of an ideal computer simulator.

Type of input

One very important characteristic useful in classifying
simulators is the type of input which the simulator
requires. In other words, how must the computer
system, its operating constraints, and its job mix be
specified? Ideally, one would want a completely para-
meterized program capable of simulating any existing
or proposed computer system. The only input needed
to describe the system would be simple parameter values.
As yet, no such program has been proposed. These
authors feel that the development of such a program in
the near future is not feasible because of the differences
between hardware and operating systems to be simulated,
the rapid changes in computer technology and organiza-
tion, and the wide variations in simulation objectives.

One special-purpose parameterized program which is
widely used for evaluating computer systems is SCERT
(System and Computer Evaluation and Review Tech-
nique).%'7 SCERT is not a simulation program in the
usual sense. It does not have a clock which it advances
to simulate real time. Instead it uses a “table-look-up”
and a series of empirically determined equations to esti-
mate a computer system’s behaviour under a given job
mix. Written in assembly language, SCERT allows the
user to specify particular hardware configurations by
reading in the manufacturer’s model numbers. This
eliminates the time-consuming work needed to specify

t M.LT. Lincoln Laboratory, Lexington, Massachusetts. (Research for this paper was performed when the authors were employed

by The MITRE Corporation, Bedford, Mass.)

20z UoJe € Uo 1senB Aq $089EE/0S |/2/0 L /8101ME/|Uf09/Woo dNo"olWwapeoe//:Sdy WOy POPECIUMOQ

Simulation

SYSTEMS
ENVIRONMENT
DEFINITION

PHASE I

FILE

DEFINITION
BUILD MODEL
SYSTEM OF EACH INPUT
DEFINITION RUN ON ERRORS
COMPUTER
FILE
ASSIGNMENT
CHANGE CARDS PHASE II
CONFIGURATION
ENVIRONMENT BUILD
CONFIGURATION ERRORS IN FILE
COMPUTER MATRIX ASSIGNMENT OR
COMPLEMENT .f?f535955359§——J
PHASE III
LOOP BACK FOR
SIMULATE ADDITIONAL
RUNS ON CONFIGURATIONS
CONFIGURATION
VENDOR
TIMING —‘ PHASE 1V
PRODUCE DETAILED
SYSTEM o RUN
REPORTS ANALYSIS
SYSTEM
SUMMARIES

Fig. 1. SCERT

the relevant characteristics of the simulated computer.
However, there are two main disadvantages to such an
approach. First, one cannot evaluate any piece of
equipment which is not included in the SCERT tables;
and second, one cannot get a real feel for what charac-
teristics are the limiting ones for a particular hardware
configuration. SCERT has very few input parameters
relating to operating system functions and very limited
capabilities for evaluating time-sharing, multipro-
gramming, and multiprocessing systems. Nevertheless,
the use of SCERT has demonstrated the value of a
simulation-like approach toward hardware and operating
system evaluation. (See Fig. 1.)

Many other simulation programs also allow a few,
but not all, of the system’s characteristics to be specified
by parameters. However, most of the important charac-
teristics of the simulation, e.g., computer configuration
and operating system, must be described by routines
written in a programming language. A few simulation
programs have required that these descriptive routines
be written in the simulator’s own assembly or algebraic
compiler language.

Fine and Mclsaac!®!' and Jones?® have developed
several different simulators of this last type for evaluating

151

computer system configurations. Designed to simulate
variations of the SDC time-sharing system, these pro-
grams require that many of the hardware characteristics
be specified in JOVIAL or Q-32 assembly language.
Many operating system characteristics and some hard-
ware characteristics, however, are parameterized and
can be easily varied. These parameterized factors include
core storage size, drum and disc size, drum and disc
access speed and transfer rate, system malfunction rate,
malfunction recovery time, quantum time, queueing
discipline, and number of remote channels. Although
these simulation programs can handle time-sharing and
multiprogramming, all of them assume that the con-
figuration being simulated has only one CPU. The job
mix for the simulated system is specified statistically.
The actual probability distributions are read in for each
of thirteen characteristics (e.g., I/O calls, program length).
The simulator then generates jobs according to these
distributions. As output, the simulation programs pro-
duce complete records of response times, overhead times,
swap times, and other similar quantities. All of SDC’s
simulation programs work on a ‘“‘next event’” basis—
that is, the simulated time clock is advanced to the time
of the next event. Typically, they require about

20z UoJe € Uo 1senB Aq $089EE/0S |/2/0 L /8101ME/|Uf09/Woo dNo"olWwapeoe//:Sdy WOy POPECIUMOQ

Simulation

Fig. 2. SDC simulation

30 minutes to simulate 24 hours when run on the Q-32
computer. (See Fig. 2.)

A similar approach toward simulating large time-
sharing, multiprogramming systems has been taken by
Neilson3? in his FORTRAN IV simulation of IBM’s
360/67.

CTSS

Probably the most sophisticated computer simulator
developed to accept computer system and job mix
descriptions in an algebraic language is Scherr’s CTSS
simulator.4! His simulator consists of a series of special
statements and routines through which the computer
system is described, and a processor which conducts the
actual simulation. To specify the hardware and
operating system characteristics of the simulated system,
one constructs a program from Scherr’s special simula-
tion statements, MAD subroutines which Scherr pro-
vides, and MAD in general. This method has the
advantage that any operating system or hardware
configuration can be specified in as much or as little
detail as is desired. Of course, if the hardware and
operating systems to be simulated are extensive, the
programming effort needed to specify them will be corre-
spondingly tedious and difficult. The job mix for the
simulated system is specified by writing a program which
generates I/O calls, execution times, etc., according to
desired statistics. Scherr provides MAD subroutines
and special statements which make this process fairly
easy. Scherr’s program records statistics on response
time, throughput, queues, overhead, and other factors
during the simulation. Three factors distinguish Scherr’s

152

Initial
Setup
-l
v
Lookup
Next Event
le
Yes { Event Due?)} No
Process \ / Step
Event Clock
Event Type? System On?
Yes No
Any Chan,
Operable?
Sched, Malf, Malf. Job Load Chan Operate & Jump Clock
Event Occurs | |cmplte.| |Arrival Due Stat Step Clock Step Clock To Event
Chng By RR Cycle By Idle Cycle Due Time

(Courtesy of SDC)

approach. First, since the simulator system and the
operating system to be simulated are written in the same
language, existing operating system subroutines can be
used as an integral part of the simulator. Second,
Scherr added statistics gathering routines to the CTSS
supervisor in order to obtain accurate data on the job
mix. Third, Scherr’s simulator has produced output
very close to the CTSS system. (See Fig. 3.)

Special languages

Those programs which require the simulated computer
system and job mix to be specified in algebraic or
assembly languages have proved useful; but as general
computer systems simulation tools, they require too
much difficult recoding to be completely satisfactory.
One way to improve upon this situation has been to
use languages specifically designed to simulate systems.
Teichroew and Lubin** in a recent review have listed
more than twenty languages, among them GPSS,%*
SIMSCRIPT,34 35 SOL,3° and CSL.# These simulation
languages allow the modeller to specify the computer
configuration and job mix in a more convenient manner.

GPSS has been used by several groups to simulate
time-sharing computer systems. Campbell, McCabe,
and Nevans® have used a GPSS simulation to evaluate
different hardware in a large time-shared information
retrieval system. Stanley and Hertel*? have used GPSS
to simulate the NASA Manned Spacecraft Center’s
Real Time Computing Complex. This simulator is of a
more general nature than any of the previously men-
tioned programs. Within the System 360 limits, different
hardware devices can be specified by inputting different

20z UoJe € Uo 1senB Aq $089EE/0S |/2/0 L /8101ME/|Uf09/Woo dNo"olWwapeoe//:Sdy WOy POPECIUMOQ

Simulation

PERCENTAGE OF TIME
PROCESSOR IS WORKING
ON USERS' PROGRAMS

BC_
70} 5
L] 4
ok 5 R O
[.e o .
[lr'/
- L]
50

T
.

.

TTTT[TTTT

20
L]
L]
]
o—llllllllllllllJllllL B S N U T N U O B T T
5 10 15 20 25 30 35 40
MEAN NUMBER OF INTERACTING USERS
KEY:
® CTSS DATA

Fig. 3. Comparison of CTSS data and simulation

parameter values. The Real Time Operating System
being simulated is described by routines written in
GPSS. Similarly, the job mix is specified by GPSS
routines. One other important part of the simulation
effort is a statistics gathering program. This program
is used to record statistics on the job mix which a com-
puter system is handling. With only a small degradation
in systems performance this addition to the monitor
provides unusually accurate data on the systems job
mix and thus produces input for a more accurate
simulation.

SIMSCRIPT and SIMTRAN? have been extensively
used to simulate time-sharing, multiprogramming and
multiprocessing systems. Katz?6 has simulated a multi-
processing system with SIMSCRIPT. He specifies most
of the characteristics of a “‘direct-coupled” 7090-7040
system with routines in SIMSCRIPT. However, buffer
size, the number of input and output stations, some of the
operating system characteristics, and some of the job
mix characteristics are parameterized. For example,
by varying parameters one can compare fixed and
dynamic scheduling strategies, different queueing dis-
ciplines, and different job cutoff parameters. Each job
to be simulated is specified in terms of its input from
each peripheral device, its output to each peripheral
device, its rate of I/O calls, and its estimated execution
time under a no-overhead assumption. This last para-
meter, in fact, permits one to examine the effect of
varying CPU speed. The time at which each job enters
the system, the remote device for each job, and each

153

o CTSS SIMULATION
(Courtesy of M.I.T. Press)

job’s priority must also be given. To simulate about
one hour of work with Katz’s program requires about
20 seconds of IBM 7094 time. This low ratio of simu-
lator execution time to simulated time is achieved by a
system state approach in SIMSCRIPT where time is
always advanced to the next point where the computer
system will change its state. (See Fig. 4.)

Another simulation program designed to simulate
multiprocessor systems is being developed by R. Gold-
stein at Lawrence Radiation Laboratory.!3 Written in
SIMTRAN, this program is specifically designed to
simulate the OCTOPUS computer system at LRL which
includes an IBM 7030 STRETCH, two IBM 7094’s,
two CDC 6600’s, one CDC 3600, two PDP 6’s, an
IBM 1401, and various I/O devices. A parameterized
input table specifies the general multiprocessing con-
figuration, the data transmission rates, memory sizes
and buffer sizes. Any other hardware variations and
operating system characteristics are introduced with
SIMTRAN routines. As output the program produces
figures on actual memory utilization, graphs of memory
access time, graphs of overhead, graphs of response time,
and graphs of several other relevant variables.

The general purpose simulation languages appear to
make the construction of successful simulators for
computer systems easier. However, none of the specific
programs written in these languages are sufficiently
parameterized to allow the evaluation of a wide range
of computer systems. Furthermore, constructing new
routines to describe each new simulated computer system

20z UoJe € Uo 1senB Aq $089EE/0S |/2/0 L /8101ME/|Uf09/Woo dNo"olWwapeoe//:Sdy WOy POPECIUMOQ

Simulation

User-supplied Input:

simulation control parameters ;

hardware parameters
software parameters

environmental parameters

SIMULATOR
Measures of
, PART I: | 7 System
i | SIMULATOR PROPER Performance

Statistical

Properties JOB Parameters for
of User’s Job GENERATOR Specific Set of Jobs
Population

PART II:
OVERHEAD ANALYSER

Fig. 4. Katz’s DCS simulator

does not seem simple enough with these general simu-
lation languages to make their use economically feasible.
Kiviat?? has suggested that one solution to this dilemma
is to build higher order, more specialized, and easier to
use simulation languages out of the existing ones.
Two of the recently proposed simulation languages,
SIMSCRIPT II and IBM’s “New Simulation Sys-
tem”31: 38 have provisions for adding MACROS for
special uses. These MACROS or higher level languages
could be used specifically to describe computer systems.

Higher level languages

The development of higher level languages for
describing computer systems for simulation purposes
has been carried out in at least two instances.

IBM has been using a dynamic simulator called CSS
(Computer Systems Simulator??) to evaluate hardware
and operating system configurations. CSS is capable of
simulating hardware systems in almost any type of time-
sharing or multiprogramming mode. While the hard-
ware configuration is described by means of “equipment
specification cards” which simply list timing information
on the units, the operating system and job mix are
described by a program in the CSS modelling language.
This language contains only a small number of instruc-
tions, but they are specifically designed to facilitate the
specification of a computer program statistically or
deterministically, and vaguely or in detail. During the
simulation the CSS program automatically records
statistics on response time, overhead, and several other
important factors. Furthermore, the user can request
data on any special factors that interest him.

The second example is the Lockheed Multipurpose
Simulation System (LOMUSS II20.33), Written in
SIMSCRIPT, this program treats the operation of a
multiprocessing computer system as a problem of
allocating resources to demanding jobs. (See Fig. 5.)
Any bhardware or operating system characteristics
desired can be specified by means of “operation defini-

154

(Courtesy of Spartan Books)

tions”, For example, the CPU is specified by a list of
symbols representing its relevant operations. Paired
with each operation is the time required to perform that
operation. In LOMUSS II terminology, the CPU is
an all-or-none resource, and the time required to per-
form an operation represents the time a job must occupy
that resource while performing the operation. A disc,
however, is specified not only by a list of its relevant
operations and the rate at which they can be performed
(e.g., transfer rate) but also by its size. In LOMUSS II,
memory size is considered to be a continuous resource,
and any amount can be used by any job. Operation
symbols which are not already defined in LOMUSS II
can be created and defined by the user. The definition
takes the form of a routine written in a language called
MDL (Model Description Language). This, like CSS’s
modelling language, is designed to facilitate such defini-
tions. Thus, if the user wishes to specify an unusual
disc accessing procedure, he can define his own pro-
cedure easily and conveniently. Although some charac-
teristics of the operating system are parameterized,
most are specified by routines in MDL. In these cases,
the user need only input a number. This completely
general method of computer configuration specification
requires some research and work on the LOMUSS II
user’s part, but it requires nowhere near the amount of
work that writing a simulation program in GPSS or
SIMSCRIPT would require. LOMUSS II appears to

DISCRETE RESOURCES

Resource Type Code Operation Rate
Main Frame 06 61 16 x 10-6(Add)
65 64 x 10-6 (Muitiply)
Tape 11 111 32000 (Transfer Bytes)
112 35 (Rewind Speed)
CONTINUOUS RESOURCES

Resource Type Code Size
Memory 120 32768
Drum 130 256

Fig. 5. Sample LOMUSS II configuration definition

20z UoJe € Uo 1senB Aq $089EE/0S |/2/0 L /8101ME/|Uf09/Woo dNo"olWwapeoe//:Sdy WOy POPECIUMOQ

Simulation

allow the user to specify any configuration whether it
is a common one or not; it allows him to determine
exactly what characteristic within any part of the system
is a limiting characteristic; and it permits him to specify
different parts of the system in differing depths of detail
depending on his needs. Similarly, the method for
specifying a system’s job mix for LOMUSS II also seems
to permit a wide variation in level of detail. Each job
type is described by a small program written in MDL.
The description can be as general as only specifying an
approximate execution time, or it can be as specific as
specifying the number of ADD’s and MULTIPLY’s in
a program. Furthermore, MDL allows probabilistic
variations to be introduced into these job descriptions.
The supervisory program which determines the arrival
time of the different job types is also written in MDL.
The output which a LOMUSS II simulation produces
varies according to the user’s needs. Generally, two
types of records are maintained during the simulation:
a record of the state of each resource at different points
in time, and a profile of each job. Thus, statistics on
response time, processor idle time, memory utilization,
throughput, queue behaviour, and many other factors
are available. The time for a LOMUSS II simulation
averages about one-third of the real time period being
simulated.

Ideal characteristics

These last two approaches toward constructing a
generally applicable program or language for simulating
computer systems appear to be a step above any of the
previous attempts. The analysis and comparison of all
these various approaches to computer systems simulation
enables one to list a set of ideal characteristics for a
computer systems simulator. First, one should be able
to simulate a wide variety of hardware and operating
system configurations without extensive recoding for
each application. When reprogramming is necessary, it
should be in a special language for modelling computer
systems. Furthermore, the program should be able to
simulate different parts of the computer configuration at
different levels of specificity. One person might want

Bibliography

1. BLUNDEN, G. P., and KrasNnow, H. S.

IBM-ASD-TR-17-181, Yorktown Heights, N.Y., 1965.

2. BrabDOCK, D. M., C. B. DOwWLING, and K. ROCHELSON.

July 1965.

3. BRowN, J. W., W. A, GranT, L. R. KiMBLE, G. LANGNas, and T. G. Sanborn.

to perform a simulation just for the purpose of examining
a disc accessing strategy, while another person might be
interested in how a system’s response varied with the
number of users. Also, by permitting different levels of
simulation in different parts of the configuration, one
avoids the unnecessary detailed descriptions which
would be required if a fine level of simulation were used
for the entire computer configuration. Similarly, the
program should allow one to specify the job mix either
very generally in a probabilistic manner or very speci-
fically, even to the point of giving the number of ADD’s
and MULTIPLY’s in each program. For widest appli-
cability, a computer system simulator should be a
dynamic simulator—that is, it should have a clock
whose advances represent real-time advances. As out-
put, the simulator should produce snapshots of the state
of the computer system at different time periods, and
profiles of each job that goes through the system. Also,
it should record statistics on such factors as response
time, queue behaviour, throughput, processor idle time,
memory utilization, I/O device utilization, and monitor
efficiency.!® Three other characteristics which are
important in a computer system simulator are proven
validity, high reliability (producing about the same
result on different runs), and efficiency (a high ratio of
simulated real-time to execution time of the simulator).
Finally, associated with a computer systems simulator
at any installation should be a statistics-gathering pro-
gram which, as part of that computer system’s monitor,
can obtain accurate statistics on that installation’s job mix.

Thus systems simulation has proved successful in
studying many specific computer systems. If used as
indicated in this paper, computer systems simulation
can be a useful general-purpose tool for evaluating
proposed hardware and software configurations, and
for controlling the orderly evolution of an installation’s
computing facility.

Acknowledgements

The authors wish to thank Messrs. Jack D. Porter and
John H. MclIntosh for their encouragement and assis-
tance in the preparation of this paper.

“The Process Concept as a Basis for Simulating Modeling”, IBM Corporation,

“SIMTRAN Manual”, IBM Corporation, Poughkeepsie, N.Y.,

“Programmer’s Manual for SIMCON”,

Space Technology Laboratories, Inc., Redondo Beach, Cal., July 1960.

wn S

. CampBELL, J. B., J. R. McCaBg, and E. S. NEvANs.

March 1966.
6. COMRESS Incorporated.
7. DENNING, J. P.
October 1965.
8. FaMmoLaARri, E.
Bedford, Mass., January 1964.

. BuxtoN, J. H,, and J. G. Laski. “Control and Simulation Language”, The Computer Journal, 5(3), 1963, 194.

“The Application of Large Scale Computers to U.S. Air Force
Information Systems”, Electronic Systems Division, AFSC, ESD-TR-66-137, L. G. Hanscom Field, Bedford, Mass.,

155

“SCERT Users Manual”, Washington, D.C., March 1965.
“Queueing Models for File Memory Operation”, M.I.T., Project MAC, MAC-TR-21, Cambridge, Mass.,

“FORSIM IV, FORTRAN 1V Simulation Language User’s Guide”, The MITRE Corporation, SR-99,

20z UoJe € Uo 1senB Aq $089EE/0S |/2/0 L /8101ME/|Uf09/Woo dNo"olWwapeoe//:Sdy WOy POPECIUMOQ

37.
38.

39.
40.
41.

42.
43.

45.

46.

Simulation

. Fire, D. W. “An Optimization Model for Time-Sharing’’, AFIPS, 28, Spring 1966, 97.
. FInNg, G. H,, and P. V. Mclsaac. “‘Simulation of a Time Sharing System”, System Development Corporation, SDC-SP-1909,

Santa Monica, Cal., December 1964.

. FINg, G. H. “‘Preliminary Investigations in Time-Sharing Simulation”, System Development Corporation, SDC-TM-2203,

Santa Monica, Cal., January 1965.

. GiBsoN, C. T. “Time-Sharing in the IBM System/360 Model 67, AFIPS, 28, Spring 1966, 61.

. GoLDSTEIN, R. (Personal Communication.) Lawrence Radiation Laboratory, Livermore, Cal., July 1966.

. GORDON, G., and K. BLAKE. ‘“Systems Simulation with Digital Computers”, IBM Systems Journal, 3(1), 1964, 14.

. GrRaHAM, K. R. ““A Comparison of the Simplex and Semi-Duplex Configuration for the IBM 360/67"°, Unpublished Paper,

Carnegie Institute of Technology Computation Center, Pittsburgh, Pa., Spring 1966.

. GREEN, B. F,, and L. R. HuesMANN. “Computer Time-Sharing”, Unpublished Report, Carnegie Institute of Technology,

Pittsburgh, Pa., 1965.

. HErmAN, D. J,, and F. C. THrer. ‘“The Use of a Computer to Evaluate Computers”, AFIPS, 25, Spring 1964, 383.
. HuesmMANN, L. R., and R. P. GOLDBERG. ‘A Review of Computer Systems Simulation’’, The MITRE Corporation, MTR-258,

Bedford, Mass., August 1966.

. HurcHinsON, G. K. “Generalized Models of Information Processing Systems’, Paper presented at Operations Research

Society of America National Meeting, May 1966.

. HurcHINSON, G. K. “A Computer Center Simulation Project”, C. ACM, 8(9), September 1965, 559.
. HurcHinson, G. K., and J. N. MAGUIRE. “‘Computer Systems Design and Analysis Through Simulation”, AFIPS, 27,

Fall 1965, 161.

. IBM Corporation. *“Analysis of Some Queueing Models in Real-Time Systems”, IBM-F20-0007-0, White Plains, N.Y.,

1964.

. IBM Corporation. “Computer System Simulator: Application Descriptions”, IBM-F20-0322-0, White Plains, N.Y., 1964.
. IBM Corporation. “General Purpose Systems Simulator III Introduction”, IBM-B20-0001-0, White Plains, N.Y., 1965.

. Jongs, B. Personal Communication, System Development Corporation, Santa Monica, California, June 1966.

. Katz, J. H. “Simulation of a Multiprocessor Computer System”, AFIPS, 28, Spring 1966, 127.

. Krviat, P. J. “Development of New Digital Simulation Languages”, The RAND Corporation, Santa Monica, Cal., 1966.
. KLEINROCK, L. “Sequential Processing Machines Analyzed with a Queueing Theory Model”, J. ACM, 13(2), April 1966, 179.
. Knuty, D. E,, and J. L. McCNELEY. ‘A Normal Definition of SOL”, The IEEE Transactions on Electronic Computers,

August 1964.

. KNUTH, D. E., and J. L. McNELEY, “SOL—A Symbolic Language for General Purpose Systems Simulation”, The IEEE

Transactions on Electronic Computers, August 1964.

. Krasnow, H. S. “Highlights of a Dynamic System Description Language”, IBM Corporation, IBM-ASD-TR-17-195,

Yorktown Heights, N.Y., 1966.

. Krasnow, H. S., and R. A. MerRIKALLIO. “The Past, Present, and Future of General Simulation Languages™, Management

Science, 2(2), 1964, 236.

. Lockheed Missiles and Space Company. “Lockheed Multipurpose Simulation System (LOMUSS II)’, Sunnyvale, Cali-

fornia, June 1966.

. Markowirz, H. M., and B. DiMspALE. ““A Description of the SIMSCRIPT Language”, IBM Systems Journal, 3(1), 1964, 57.
. MArkowIrz, H. M., B. HAuseRr, and H. W. KARR, (RAND), SIMSCRIPT: A Simulation Programming Language, Englewood

Cliffs, N.J., Prentice Hall, 1963.

. McIntosH, J. H. “COMET Internal Timing Analysis”. The MITRE Corporation, Memo MD84-941, Bedford, Mass.,

June 1966.

NEiLsoN, N. Personal Communication, Stanford University, Palo Alto, Cal., June 1966.

PARENTE, R. J. “A Language for Dynamic System Description”, IBM Corporation, IBM-ASD-TR-17-180, Yorktown
Heights, N.Y., 1965.

PORTER, J. D. “Multiprogramming/Multiprocessing Evaluation Studies”, The MITRE Corporation, Bedford, Mass.,
Paper presented at Inter-Service Conference on EDPE Selection Methodology and Data Exchange, July 1966.

RoskeN, S. B, E. S. NEVANS, R. M. WALKEN, W. AsMUTH, and L. C. MARSHALL. “‘A Study of System Modeling Techniques”,
Electronic Systems Division, AFSC, ESD-TDR-63-612, Hanscom Field, Bedford, Mass., October 1963.

SCHERR, A. L. “An Analysis of Time Shared Computer Systems”, M.L.T., Project MAC, MAC-TR-18, Cambridge, Mass.,
June 1965.

SmrTH, J. L. ““An Analysis of Time-Sharing Computer Systems Using Markov Models”, AFIPS, 28, Spring 1966, 87.

STANLEY, W. 1., and H. F. HERTEL. ‘‘The Performance Measurement and Analysis of System/360 Multiprogrammed Systems”,
IBM Federal Systems Division, Houston, Texas, July 1966.

TeicHroEw, D., and J. F. LusiN. “Computer Simulation-Discussion of the Technique and Comparison of Languages”,
C. ACM, 9(10), October 1966, 723.

YoucHaH, M. 1., and D. D. RubiE. “A Universal DPC Simulator Applied to SACCS Program System Design”, System
Development Corporation, SDC-SP-924, Santa Monica, Cal., July 1963.

YoucHAH, M. 1., D. D. RuUDIE, and E. 1. Jounson, (SDC). “The Data Processing System Simulator”, AFIPS, 26, Fall 1964,
251.

156

20z UoJe € Uo 1senB Aq $089EE/0S |/2/0 L /8101ME/|Uf09/Woo dNo"olWwapeoe//:Sdy WOy POPECIUMOQ

