
A compaction procedure for variable-length storage elements

By B. K. Haddon* and W. M. Waitef

When a dynamic storage allocation scheme requires variable-length elements, an element of a
given length may be requested when no free element large enough is available. This can happen
even though the total free space is more than adequate to fulfil the request. In such a situation
the program will fail unless some method is at hand for forming the available space into a single
element large enough to satisfy the request. We present a procedure for compacting the store
such that all of the free space forms a single element.

Introduction
One of the most important problems in the construction
of a dynamic storage allocation scheme is that of
recovering storage space which is no longer being used
by the program. The mechanics of detecting the
existence of such "garbage" have been adequately
described (Newell et al. (1964); McCarthy, 1960;
Collins, 1960; Schorr and Waite, 1965). In the case
where the elements of storage required by the program
are of variable size (Comfort, 1964; Ross, 1961;
Knowlton, 1965) it may happen that an element of a
certain size is needed and, although sufficient free space
is available, no free element which is large enough can
be found. For example, suppose that 20,000 words of
memory were allotted as a storage area to contain one-
and two-word elements. If the first, third, . . ., 19999th
words were all occupied by one-word elements, it
would not be possible to obtain a two-word element
even though 10,000 words were free. What should be
done in this case is to "compact" the store by moving
all one-word elements to one end, leaving a single
10,000 word block of free space.

To our knowledge, none of the papers describing
variable-length storage elements deals with this problem.
Perhaps, as has been intimated in discussion of the
subject, it is felt that a procedure to compact the store
is too expensive to include in the storage allocation
scheme. Here we emphatically disagree! Compaction
is only used when the program would otherwise fail,
and in such circumstances no expedient is too expensive.
The method which we shall propose requires no I/O
devices, and only a small, fixed amount of temporary
storage. (We assume that the smallest storage element
contains at least enough space for two addresses and a
flag.)

One of the characteristics of the storage elements
under consideration is that they are linked by address
pointers which must be relocated when compaction
takes place. We assume that the relative positions of
these relocatable fields in a given element can be deter-
mined, possibly by relocation bits in the element or by
some type code which specifies a format.

The procedure
Suppose that, during the course of program execution,

we require a storage element which is larger than any
available on the free list. The first step is to perform
a normal garbage collection, forming a new free list
with elements as large as possible (Schorr and Waite,
1965). As the free list is being formed, a count of the
total number of free words should be kept. If there is
no free element which is large enough to satisfy the
requirement, and yet there are enough free words, then
the compaction procedure is entered.

By consulting the free list, we can mark all free storage.
Using this information we move all non-free elements
to a compact block at the lower end of the storage area,
and at the same time build up a table for use in relo-
cation. For each block of consecutive non-free elements,
this "break table" has one entry giving the address of
the first word of the block and the number of free
words below the block. Fig. 1 shows an example of
the break table corresponding to a particular state of
the storage area: If the hatched elements in Fig. l(a)
have been marked as being free, then the break table
will be that shown in Fig. \{b).

After the non-free elements have been moved and the
break table constructed, all relocatable fields are updated
by looking up their contents in the break table and sub-
tracting the number of free words below that address.
If a relocatable address is not equal to any table entry,
the number of free words associated with the next
lower table entry is used; any address lower than the
lowest entry is unchanged. In Fig. 1, for example, a
relocatable field which contained the number
BOT + 950 would be altered to contain BOT + 100
(= BOT + 950 — 850); a field containing BOT + 990
would be changed to BOT + 140.

In the introduction we asserted that the compaction
procedure did not use I/O devices, and required only a
small, fixed amount of temporary storage. A simple
inductive argument can be used to demonstrate the
truth of that assertion: First note that the situation
depicted in Fig. 1 always holds for the uncompacted
store. That is to say, the first element of the uncom-

*Basser Computing Department, University of Sydney, Sydney, N.S.W., Australia.
^Department of Electrical Engineering, University of Colorado, Boulder, Colorado, U.S.A.

162

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/162/336825 by guest on 19 April 2024

BOT
BOT + 100
BOT + 200

\

BOT + 950

BOT + 1200 -

BOT+ 1600-

BOT + 1999 -

Compaction procedure

100 words

• 750 words

400 words

(a) A state of a 2,000-word store

Address

BOT+ 100

BOT+ 950

BOT + 1600

Free words

100

850

1250

(b) Break table corresponding to (a)

Fig. 1.—Example of a break table

Current
position—
of table

Area already
completed

Free Area

Free area

Area to be
processed

length/i > 0

length t = kT

length f2 > T

h+h>2T

T = length of one table element

Fig. 2.—State of the store after moving a non-free block

pacted store will always be free. (For if it were not
free there would be no need to move it, and hence we
could begin the compaction procedure with the next
element.) The temporary storage area is capable of
holding one table entry, and the compaction process
begins by finding the first non-free block and placing

Position of
previous
table after
being moved

Area already
compacted

Free
area

Area to be
processed

1length//
= (fi+/2-T)>T

length t' = {k + \)T

(a) State of store after moving the table (case 1)

Previous
table

Area already
compacted

Free
area

Free
area

Area to be
processed

length/('=

length / ' = (k + \)T

length fi=h-T

(b) State of store after adding new table entry (case 2).

Fig. 3.—Adding the next table entry

its table entry in this area. The block is moved down,
filling the free space below it. The store is then in the
state shown by Fig. 2, with / , = k = 0. If / 2 is the
length of the next free space, then f2 > IT because it is
made up of two continguous free areas, each of which
must be at least large enough to hold one table entry.
(Recall that a table entry is no larger than two addresses,
and the smallest storage element has space for two
addresses and a flag.)

We now complete the induction by assuming that at
some stage the store has the form of Fig. 2. Two cases
may be distinguished: (1)/, = 0,/2 > 2T, and (2)/i > 0.
In case (1), we place the table entry for the next non-
free block immediately below the element which it
describes, and move the rest of the table up to it. The
state of the store is then given by Fig. 3a. Case (2)
does not require that the table be moved, and the entry
describing the next non-free block is placed immediately
above the existing table as shown in Fig. 3b. In either
case f[+ / 2 > T because / , + / 2 > IT. The next step
is to move the non-free block down into the space

163

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/162/336825 by guest on 19 April 2024

Compaction procedure

Current
position —
of table

Area already
compacted

Free area

Area yet to
be processed

<
-<
<

Fig. 4.—"Rolling" the table

below the table. If the block length is less than f{
there is no problem; if it is greater, then when the space
f{ is full there will be a contiguous free area above the
table which is at least as large as one table entry (because
f\ +fz > T). We therefore move the table up as far
as possible before continuing to move the non-free
block down. When the non-free block has been com-
pletely moved, the store will be in the state of Fig. 2.
To see this, recall that before the move, we had a free
space f[+ fi > T below the non-free block. After the
move, this free area and the table are adjacent to the
next free block, which is at least of length T. Thus the
total free space adjoining the table is 2T, as shown in
Fig. 2.

The inductive argument given above shows that we
will always have room to add another entry to the table,
as long as we uncover a new free block. Suppose,
however, that the last block of memory is not free. We
are able to compact this block, and move the table if
necessary, but we will not get another free block. This
is not serious, however, because we need not add any
more entries to the table. The free space adjoining the
table has length greater than T, so that we can recall
the first table entry from temporary storage.

The most crucial point in a practical realization of the
algorithm is to minimize the number of moves involving
the table entries. If the table is "rolled" (see Fig. 4:
entries are moved from the front to the highest available
space, continuing until either the whole table is moved
or the free space above the table is filled), one can
guarantee that only one table entry will be moved into

Table 1

Compaction times for various element lengths

LENGTH OF ELEMENT

1 word
2
3
4
5
6
7
8
9

10
20
40
80

100
1000

TIME TO COMPACT AND SORT

2-87 sec
1-26
0-94
0-69
0-57
0-52
0-44
0-42
0-39
0-34
0-24
0 1 9
0 1 6
0-15
0 1 0

0-478 x 106 cycles
0-210
0157
0115
0 095
0 087
0 073
0 070
0 065
0 057
0 040
0031
0 027
0 025
0017

a given position. An upper bound on the number of
moves during compaction is thus (size of store)/r.
Additional movement of table entries occurs when the
table is sorted just before relocation.

Results
The compaction procedure described in this paper

has been successfully run on the English Electric KDF 9,
in conjunction with an extension of the WISP (Wilkes,
1964; Orgass et al., 1965) list processor. The program
occupies 58 words, and takes 2-87 seconds to compact a
10,000-word store in the worst case (single word elements,
alternate elements free).

In order to determine the effect of element size, we
tried compaction with alternate elements free and ele-
ment sizes between 1 and 1000 words. In each case the
length of a table entry was one word, and the length
of the storage area was 10,000 words. The results are
shown in Table 1; all of these times include the sorting
of the table. A rough estimate of the time required on
other computers may be obtained by multiplying the
number of cycles given in Table 1 by the main store
cycle time of the machine.

We wish to emphasize once more that compaction is
only used when the program could not otherwise con-
tinue. The procedure is not invoked with each garbage
collection. The results summarized above indicate that
this procedure is a cheap form of protection to include
in any dynamic allocation scheme which uses variable-
length elements.

References

NEWELL, et al. (1964). Information Processing Language—V Manual, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ.

164

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/162/336825 by guest on 19 April 2024

Compaction procedure

MCCARTHY, J. (1960). "Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I", Comm.
ACM,\ol 3, p. 184.

COLLINS, G. E. (1960). "A Method for Overlapping and Erasure of Lists", Comm. ACM, Vol. 3, p. 655.
SCHORR, H., and WATTE, W. M. (1965). An Efficient Machine Independent Procedure for Garbage Collection in Various List

Structures, Research Rept. RC-1450, International Business Machines Corp.
COMFORT, W. T. (1964). "Multiword List Items", Comm. ACM, Vol. 7, p. 357.
Ross, D. T. (1961). "A Generalized Technique for Symbol Manipulation and Numerical Calculation", Comm. ACM, Vol. 4,

p. 147.
WILKES, M. V. (1964). "An Experiment with a Self-Compiling Compiler for a Simple List Processing Language", Annual

Review in Automatic Programming, Vol. 4, p. 1.
ORGASS, et al. (1965). WISP—A Self Compiling List Processing Language, Technical Rept. 36, Basser Computing Department,

University of Sydney, Sydney, Australia.

Data compression and automatic programming
By A. G. Fraser*

Data compression is defined as the reduction of the volume of a data file without loss of information.
Methods of obtaining this effect are considered and the implications for automatic programming
systems are discussed.

In certain, commercial undertakings it is necessary to
process data which is not always of fixed format or size.
Commonly, names and addresses of exceptional length
are held, although the majority are of only modest pro-
portions. Also a data record may contain the occasional
but bulky item of additional information which, for the
normal case, is totally irrelevant. Variations such as
these do not normally present serious problems in a
manual data processing system but they must be viewed
with some concern when mechanization is introduced.

Operating costs for an automatic data processing
system depend heavily upon the volume of data held and
the extent of the computing activity which is required per
event. It is usually possible, however, to reduce the
volume of data but only at the cost of increased complexity
in the computing process, and there are a number of ways
in which this is commonly done.

(a) Redundancies
It may be possible to reduce the volume of redundant

information carried by the system, but it may then be
necessary to re-compute certain values when they are
required.

(b) Coding
By the use of special codes it may be possible to reduce

the size of a data item without loss of information. This
method may be worthwhile where the number of distinct
values that can be taken by an N-bit item is considerably
less than 2n but its use will probably involve table
accesses during processing.

(c) Special cases
By the use of special representations for special values

it may be possible to take advantage of known patterns in
the data. One example is the special treatment of zero
items and "not applicable" groups. Another example is
the storage of only the significant characters in an
alphanumeric string or the storage of only the significant
members of a multi-occurrence group.

The user must strike a balance between data volume
and procedural complexity in order to get maximum
return from his data processing machinery. The choice of
method is one that can only be made in the light of a full
understanding of the nature of the job and the demands
to be met. Such a choice can only be made by the user
and cannot be made automatically on his behalf without
risk of severe inefficiency. However, automatic pro-
gramming methods could well assist the user once the
basic decision has been taken, since the application of
these techniques for data handling is a well defined
operation.

Compiler source language
Methods of data compression vary but for many there

are two clearly denned stages in their application. First,
the method is denned by a series of rules which must be
obeyed rigorously if the method is to work. Secondly,
each and every data reference must be handled in
accordance with the rules applicable to the item concerned.
An automatic programming system can be of service to
its user by rigorously applying such rules. Indeed the
mechanical application of rules of this type is almost

• University Mathematical Laboratory, Corn Exchange St., Cambridge, England.

165

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/162/336825 by guest on 19 April 2024

