
Compaction procedure

MCCARTHY, J. (1960). "Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I", Comm.
ACM,\ol 3, p. 184.

COLLINS, G. E. (1960). "A Method for Overlapping and Erasure of Lists", Comm. ACM, Vol. 3, p. 655.
SCHORR, H., and WATTE, W. M. (1965). An Efficient Machine Independent Procedure for Garbage Collection in Various List

Structures, Research Rept. RC-1450, International Business Machines Corp.
COMFORT, W. T. (1964). "Multiword List Items", Comm. ACM, Vol. 7, p. 357.
Ross, D. T. (1961). "A Generalized Technique for Symbol Manipulation and Numerical Calculation", Comm. ACM, Vol. 4,

p. 147.
WILKES, M. V. (1964). "An Experiment with a Self-Compiling Compiler for a Simple List Processing Language", Annual

Review in Automatic Programming, Vol. 4, p. 1.
ORGASS, et al. (1965). WISP—A Self Compiling List Processing Language, Technical Rept. 36, Basser Computing Department,

University of Sydney, Sydney, Australia.

Data compression and automatic programming
By A. G. Fraser*

Data compression is defined as the reduction of the volume of a data file without loss of information.
Methods of obtaining this effect are considered and the implications for automatic programming
systems are discussed.

In certain, commercial undertakings it is necessary to
process data which is not always of fixed format or size.
Commonly, names and addresses of exceptional length
are held, although the majority are of only modest pro-
portions. Also a data record may contain the occasional
but bulky item of additional information which, for the
normal case, is totally irrelevant. Variations such as
these do not normally present serious problems in a
manual data processing system but they must be viewed
with some concern when mechanization is introduced.

Operating costs for an automatic data processing
system depend heavily upon the volume of data held and
the extent of the computing activity which is required per
event. It is usually possible, however, to reduce the
volume of data but only at the cost of increased complexity
in the computing process, and there are a number of ways
in which this is commonly done.

(a) Redundancies
It may be possible to reduce the volume of redundant

information carried by the system, but it may then be
necessary to re-compute certain values when they are
required.

(b) Coding
By the use of special codes it may be possible to reduce

the size of a data item without loss of information. This
method may be worthwhile where the number of distinct
values that can be taken by an N-bit item is considerably
less than 2n but its use will probably involve table
accesses during processing.

(c) Special cases
By the use of special representations for special values

it may be possible to take advantage of known patterns in
the data. One example is the special treatment of zero
items and "not applicable" groups. Another example is
the storage of only the significant characters in an
alphanumeric string or the storage of only the significant
members of a multi-occurrence group.

The user must strike a balance between data volume
and procedural complexity in order to get maximum
return from his data processing machinery. The choice of
method is one that can only be made in the light of a full
understanding of the nature of the job and the demands
to be met. Such a choice can only be made by the user
and cannot be made automatically on his behalf without
risk of severe inefficiency. However, automatic pro-
gramming methods could well assist the user once the
basic decision has been taken, since the application of
these techniques for data handling is a well defined
operation.

Compiler source language
Methods of data compression vary but for many there

are two clearly denned stages in their application. First,
the method is denned by a series of rules which must be
obeyed rigorously if the method is to work. Secondly,
each and every data reference must be handled in
accordance with the rules applicable to the item concerned.
An automatic programming system can be of service to
its user by rigorously applying such rules. Indeed the
mechanical application of rules of this type is almost

• University Mathematical Laboratory, Corn Exchange St., Cambridge, England.

165

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/165/336830 by guest on 10 April 2024



Data Compression

essential since program bugs introduced by failure to
apply a rule correctly can be very difficult to diagnose.
An automatic programming system could also be of
assistance with some of the problems which arise when
data compression is employed. For example:

The record layout will be a function of the sizes and
values of the particular items involved so that diagnostic
printouts will require translation. Test data (and even
live data) may have to be assembled in compressed form
and this also will involve some translation. In a data
processing application there will be many files which are
used by more than one program. Each program must
therefore be sure to assume the same file format and must
obey the same compression rules. Space recovery might
be expensive if done thoroughly, and the user could well
expect to be able to select thorough space recovery for
only some of his programs (e.g. "end of the month"
runs.) Compatibility between different files will also be
required in order to avoid expensive transformations when
two files are brought together. Dependencies of this
nature can form quite complex inter-relationships
within one set of files, and a well-organized programming
system could be of immense value by providing the
necessary administrative controls.

In so far as data compression methods have been used
in general purpose compilers it has been usual to build
into the system knowledge of a limited set of methods.
The following is a list of some methods which might be
used.

1. Item value stored in coded form. Either or both of
two translation rules must be specified; one for
obtaining the true value and the other for assigning
a new value. The translation might possibly be
defined in tabular form.

2. Less significant (and/or most significant) spaces (or
other) characters suppressed and the item size
adjusted accordingly.

3. Less significant (or otherwise identifiable) occur-
rences of a multi-occurrence group suppressed.

4. Special arrangements made for storing the zero
elements in an array (or table).

5. Erased (or otherwise identifiable) form of an item,
or group of items, represented in compact form.

6. Item value not stored but obtained when required by
evaluating a specified expression.

7. Advantage taken of the knowledge that two data
items are mutually exclusive and cannot both be
meaningful at any one instant.

One might also consider a system in which the user is
able to declare a data compression method of his own.
There would be four components to such a declaration:

(a) A rule for recognizing an item that is to be handled
by the method and a description of how the fixed
parameters of the method are to be obtained from
the item specification.

(b) A rule for space allocation including details of the

additional items that are needed for control
purposes.

(c) A rule for obtaining the value of the item at
object time and including rules for obtaining in-
formation about the state of the item (e.g. sup-
pressed) if the system recognizes such states.

(d) A rule for assigning a value to the item at object
time together with details about certain special
cases, e.g. how the item can be suppressed explicitly
and whether or not it can be updated in situ.

A realistic choice of the facilities to be provided in an
automatic programming system will show some concern
for compiling speed and object program efficiency. No
doubt, also, compiler size will be a serious consideration.
Indeed, it is most likely that the software designer will
limit the range of facilities provided since, as will be
shown, the demands on the compiler are heavy and
optimization of the object program is not a trivial task.
One effective way of simplifying the system is to impose a
restriction upon the number, or juxtaposition, of items
that employ data compression methods. Alternatively
one could abandon any pretence of concern for object
program speed when such items are used.

There is one other aspect of compiler design that is
brought to the fore when data compression methods are
automatically compiled. This concerns the user's
awareness of the costs which result from his own decisions.
A high level source language may so insulate the user
from the stresses of machine coding that he loses all feel
for the machine on which he is constrained to operate.
In this way a fully automatic system for handling data
compression could be turned from an aid to optimization
into a weapon with very high end costs. Some form of
feedback is essential.

Compiling process
Increased object program complexity is the price paid

by those using the methods of data compression which
are described above. It is therefore not surprising that the
introduction of these methods into an automatic pro-
gramming system should result in increased size and
complexity in the compiler itself. Apart from the extra
software which is required to provide the special functions
made necessary by the use of compressed data formats,
special problems are posed for the construction of the
central compiling process.

Several additional factors are brought into play when
data compression is used. The most important follows
from the fact that item addresses do not remain constant
when more than one variable item is permitted in one
data record. Under such circumstances the address of
one item, say A, may vary with each variation in the
length of some other item, say B. This fact alone can
have wide repercussion on the design of the compiling
process. For example, in order to give effect to the
statement COPY A TO B it is necessary for the object
program to find the length of A, adjust the length of B

166

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/165/336830 by guest on 10 April 2024



Data Compression

and then find the new position of A before the conven-
tional transfer operation can be obeyed.

Similar complications arise as a result of the intro-
duction of items whose attributes are not constant during
the course of program execution. The length of an
alphanumeric string, the number of occurrences of a
multi-occurrence item and the possibility of a totally
suppressed item are all cases in point. Not only must the
compiler have an answer to the situations created in this
way but the attributes themselves will probably need to
be given recognition at source language level.

Another form of complexity is peculiar to those
machines which have a fixed word length. The user of
such a machine may well attempt to store more than one
item per computer word and could reasonably expect the
compiler to handle such items, dealing automatically with
the necessary shifting, collating and checking for field
overflow. To do this the compiler must check for and
compile the field extraction and field insertion in-
structions every time it handles a data reference. Further-
more the store address, as used in the compiled instruction,
is no longer sufficient to identify a single item of data.
These are matters which concern the central operations
of any compiler.

Field access, checks on item status and address calcu-
lation are the three principal activities which are auto-
matically inserted into the object program in order to
provide a data compression capability. Each may be
compiled for every item reference and it is probable that
some of this coding will be redundant. Where this is the
case one must consider the possibility of including some
form of optimization during compilation. Consider, for
example, the statement COPY X + Y to Z. If X, Y and
Z occupy subfields of different computer words then
collating and shifting would be required. The simple
approach would be to shift into a standard position before
adding and then shift again before collating into Z.
Clearly, however, no shifting need take place if X, Y and
Z were identically placed in their respective computer
words. Furthermore if X and Y were contained within

one group G whose position could vary then, in the simple
approach, the address would be calculated twice, whereas
this could have been avoided. Similar effects arise in
relation to checks on item status which may be compiled
into the object program.

Optimizations of the type described above can take two
distinct forms. In the above example the redundancy
was contained entirely within the scope of one source
language statement. Similar redundancies can arise
within a string of statements even though there is no
apparent redundancy when each statement is considered
separately. To handle this latter type is a far more
exacting task for any compiler, since it involves a process
in which the compiler seeks to discover the strategy of the
program that it is compiling, a process which is not
always possible and nearly always expensive. It
involves following the possible control paths through the
source language program and noting where the user has
referred to items of interest. If an address calculation,
for example, is to be omitted then the compiler must be
sure that the object program will continue to operate
properly whatever path the program takes. This type of
analysis is sometimes carried out in connection with
repeated operations on arrays, but it is unfortunate that
commerically useful data records are unlikely to be as
simply constructed and the interrelationship between
items can be quite complex. Any solution is almost
certain to involve what amounts to a simulation of the
item status calculations in sections of the object program.

Conclusion
There is clearly a place for some form of data com-

pression in programs compiled for use in a commercial
environment, and it also seems clear that techniques of
automatic programming could be used to advantage in
applying data compression methods. Unfortunately it is
far from clear that this can be done without significant
loss of performance both at compile time and in the
object program.

167

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/165/336830 by guest on 10 April 2024


