On the best linear Chebyshev approximation

By M. R. Osborne and G. A. Watson*

The principal part of this paper is devoted to reworking the equivalence of the Stiefel exchange
algorithm for Chebyshev approximation with the simplex algorithm applied to the dual of the
linear programming formulation of the same problem. Our main concern has been the provision
of algorithms free from the major restrictions of classical approximation theory, and it appears
that these restrictions can be relaxed almost entirely.

1. Introduction

The aim of this paper is to discover how the restrictions
of classical linear approximation theory affect techniques
for computing best approximations to functions. We
give an account of this classical theory with a view to
underlining the main assumptions and to presenting a
unified approach to both discrete and continuous
problems. Also we rework the equivalence of the
Stiefel exchange algorithm which was developed largely
within the framework of classical approximation theory
with an algorithm based on a linear programming
approach. The point here is that the linear programming
approach should be free from the restrictions usually
imposed on the Stiefel exchange algorithm so that it
should provide a useful tool for gauging the limitations
of the classical theory.

The main conclusion is that the restrictions of the
classical theory can be relaxed almost entirely. Specifi-
cally, algorithms can be provided which give a best
approximation in very general circumstances. However,
the classical assumptions cannot be weakened without
permitting the possibility of the non-uniqueness of the
best approximation (see, for example, Cheney (1966),
pp- 80-82).

We mention some details concerning notation. We
write p;(4) and «;(4) to refer to the ith row and the jth
column respectively of the matrix 4. The unit vector
e; is defined as usual to be a vector with 1 in the jth
place and zeros elsewhere. We write e for the vector
each element of which is 1. The appropriate dimension
of a vector should be clear from the context. We will
have some occasion to use partitioned vectors—for

A
example [7:, is a column vector A extended by a scalar 7.

A similar notation will be used for row vectors—for

A T
example [T] is written [AT, 7].

2. A survey of the classical theory

The classical results concerning the minimax solution
of n linear equations in p(<C n) variables (also called the
discrete 7" problem) are based on the assumption that
any p X p submatrix of the set of equations is non-
singular. This assumption is usually called the Haar
condition.

To explain the significance of this condition it is con-
venient to introduce first the following definitions.
1. Any set of p + 1 equations is called a reference. The
corresponding submatrix is written 4,
2. By the Haar condition the rank of 4, is p. Therefore
there is a unique vector (up to a scalar multiplier)
satisfying the equation

AT4, = 0. @.n

This vector is called the A-vector. Note that all com-
ponents of A are different from zero, if the Haar con-

dition is satisfied.
3. Let the original set of equations be written

Ax=b—r. 2.2)

Then r is called the residual vector. The components
of b and r associated with a reference form vectors which
are written b, and r, respectively.

4. The vector x is called a reference vector if either

Sgn (rp)i = Sgn (Ai)> i= 1, e P + 17
sgn (rp)i —sgn (Ai): = l’ RN 4 + L
5. Let g be the vector defined by g; = sgn (A;). Then

or

x
the matrix (4, | g) is nonsingular so that the vector l: h:l
is uniquely defined by the equations
Ax=05b,— hg. 2.3)

In this case x is called the levelled reference vector and h
is called the reference deviation.
It may be noted that

p+1
AMb,=h 3 |Aj (2.4)
i=1
and that for any reference vector
p+1
0=2A"b, + ;1 [A:] [(rp)il 2.5)

so that |A| lies between the greatest and the least of the
[(r,);|. Thus the levelled reference vector solves the
discrete T problem for the given reference. From this
observation the following theorem follows readily.

Fundamental Theorem (De la Vallée Poussin). The
minimax solution to equation (2.2)—that is the solution
for which max|r;| is a minimum—is a levelled reference
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Chebyshev approximation

vector for some reference. Further, max |r;| = |A|
where /4 is the reference deviation for this reference.

The Haar condition is sufficient for the validity of this

theorem. It is also sufficient for the validity of the
following result which provides a basis for the com-
putation of the minimax solution.
Exchange Theorem (Stiefel (1959)). Given any reference
and a corresponding reference vector then it is possible
to add to the reference any other equation and to drop
an appropriate equation from the reference so that the
given vector is also a reference vector for the new
reference. A proof of this result will be given in the next
section.

In an actual computation the chosen vector would be
the levelled reference vector for the given reference, and
the equation to be added would be that associated with
the component of maximum modulus of r. If this
equation is in the reference then the computation is
completed. It is readily shown that the magnitude of
the reference deviation rises monotonically. Let the
indices of the equations in the reference be ¢, 0,...0,1 1,
let j be the index of the equation to be added, and o;
the index of the equation to be dropped, then, by equa-
tions (2.4) and (2.5),

T IO 1] + 30|
o) =

- 2.6)
5 2,0
i=1

> |h©)|

provided |r;| > |h©|. The superfixes n and o refer to
the new and old references respectively. As there are
only a finite number of references the solution is found
in a finite number of steps. This algorithm is called the
Stiefel exchange algorithm.

Closely related to the discrete 7" problem is the con-
tinvous T problem. In this case it is required to find
numbers x,, x,, . . . X, such that the maximum deviation
in the approximation to the continuous functions f{(z)

p
by linear compounds of the form ¥ x;¢;(z) is a mini-
i=1

mum in ¢ < z< b. Again the classical results are
based on a special assumption. Here it is that no linear
combination of the ¢;(z) has more than (p — 1) zeros
on [a, b]. In this case the ¢,(z) are said to form a
Chebyshev set.

In the continuous 7" problem it is convenient to define
a reference set (z;) to be any set of (p + 1) points
zpa<z)<z;<...<Zzpp; < b On this reference
set the discrete 7' problem

S xibi(z) =fz) — 1)

s=12,...,p+1 2.7

can be defined, and the matrix of this problem forms a
reference. Two important results can now be derived
in the case that the ¢,(z) form a Chebyshev set.
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Lemma 2.1. The reference determined by equation (2.7)
satisfies the Haar condition.

This is immediate, for if any p X p minor is singular
then there is a linear combination of the ¢; which vanishes
at p points z,.

Remark. This is equivalent to the possibility of con-
structing an interpolation to f{z) by linear combinations
of the ¢,(z) on any set of p distinct points in [a, b].
Lemma 2.2. The components of the A-vector alternate
in sign for any reference based on a reference set (z;).

p
Proof Let ¢(z) = Y x;¢,(z) vanish at the points z,, z,,
i=1

Such a function always exists.

e Zganls Zsp2y 0o s Zp+1.

;l"hen
p+1
21 Aib(z) =0
j=
by definition of the A-vector,
= )‘s(l’(zs) + AH— 1¢>(ZS_|_ l)

by the construction of ¢.

Now ¢é(z,) and ¢(z,y ) have the same sign as other-
wise ¢ would vanish between them giving a linear
combination of the ¢; with at least p zeros. Thus A,
and A, have opposite sign.

The fundamental theorem for the continuous 7T

problem can be stated in terms that reflect its close con-
nection with the theorems already stated for discrete T
approximations.
The Chebyshev Theorem. Let functions ¢y, ¢, ..., ¢,
form a Chebyshev set on [a, b]. Then the minimax
approximation to the continuous function f(x) on [a, b]
by linear combinations of the ¢; is characterized by the
existence of a reference set (z;). The coefficients of the
best approximation are the components of the levelied
reference vector for this reference, and the maximum
modulus of the error function r(z) is equal to the reference
deviation. By Lemma 2.2 the extrema of r(z) alternate
in sign on the points of this reference set.

The wording of this theorem suggests that the exchange
algorithm for the discrete T problem might be modified
to solve also the continuous T problem. In the modified
algorithm a search is made for the point at which |r(z)|
is a maximum. This point is added to the reference set
and an appropriate point dropped (here this is a trivial
decision because use can be made of Lemma 2.2).
Again the reference deviation is increased in magnitude.
Further, it is bounded (it can be seen readily that
|h| < max |f(z)], a < z < b), so that the procedure is
convergent.

But an even more elaborate exchange is possible in
this case, for it is possible to select (p + 1) points of
extremal deviation of the error function for the current
approximation that are alternately 4+ and —. Thus the
current approximation forms a reference function with
respect to these points as a reference set. This should
be made clear by Fig. 1. where the end points are points
of the original reference and remain as points in the
new reference. This is the usual case.
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x Points in the original reference,

o Points in the new reference.

Fig. 1

This second exchange has proved popular in computing
polynomial approximations to functions. It has been
shown to have second order convergence (Veidinger,
1960). In this algorithm Lemma 2.2 plays an essential
part.

3. The Stiefel exchange

This section is devoted to giving a proof of the Stiefel
exchange theorem quoted in Section 2.

If p,(A) is the row to be added to the current reference
then, by the Haar condition, the matrix

= o)

has rank p. There are therefore two linearly independent
vectors v; and v, such that

yTM = 0. (3.2)

One such vector is [A@T, 0] where A® is the reference
vector for the current reference, so that any vector
satisfying (3.2) must be expressible in the form (to
within a scalar multiplier)

A
=rlo ]+

where vT is any solution of equation (3.2) which is not a
scalar multiple of [A®T,0]. A choice which is con-
venient for computation satisfies

(3.3)

p+1
80 () pul) + T vipd) =0 ()

but it could, for example, be chosen to be orthogonal to
[A@T, 0].
Now let x be a reference vector for the current
reference. Then
b

we =[] =[]

and it can be arranged that () A%(r,); >0, i=1,

3.5)
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2,..,p +1; (i) 9,4 5, > 0 (see for example equation
(3.4)). If, for some value of j, we choose

(3.6)

then u; = 0, and the remaining components of # form
the A-vector for the reference obtained by deleting the
jth row of M. If x is to be a reference vector for this
new reference then we must have

u(r,); = ((r) XNy + /A7) >0,
i i=1,2...p+L G.7)

This inequality is satisfied provided j is the index of the
algebraically least among the quotients v,/A?, i =1,
...p+1, and this proves the theorem. The Haar
condition ensures that these quotients are finite.

This is essentially the derivation given in Stiefel (1959)
for the case p = 2. For convenience in making com-
parisons with the results of the next section note that if

u is defined by
Al
" [0 } 7

then the appropriate value of vy is equal to the least in
modulus among those quotients A{®/v; which are nega-
tive. This is obviously a non-empty set when v is ortho-
gonal to [A@T, 0]. It will follow from the results of the
next section that it is non-empty also with v defined by
equation (3.4).

y = —9[A9P

(3.8)

4. Linear programming and the Stiefel exchange
algorithm

In this section and the next it will be necessary to
make use of standard results from linear programming
theory. The text we have followed is Hadley (1962),
and references to this will be cited where appropriate in
the form (H. page no.).

It is well known that the discrete T problem can be
posed as a linear programming problem (Stiefel, 1960).
This is done by introducing a new variable x,,. (> 0
which is to be minimized subject to the constraints

Xp41 —r,-} 0,xp+1 +ri> 0,i= 1,2,...,”. (4.1)

The matrix form of the linear programming problem is

x
minimize Z = e? [ :| 4.2
PH x,41 (4.2)
subject to x,. 1 > 0, and (from equation (2.2))
A el[x b
R [0 £ O

where e is a vector each component of which is 1.

In this form it is not particularly suitable for the
application of standard techniques because the matrix
of constraints is 2n X (p + 1) so that 2n slack variables
would be required, and because the components of x
are not constrained to be positive. However, both these
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difficulties are overcome by going to the dual program
because the dual constraints corresponding to columns
of the primal associated with the unconstrained variables
are equalities (H. p. 236), and all the dual variables are
constrained to be positive. The advantage to be gained
by using the dual of the linear programming formulation
of the approximation problem seems to have been
pointed out first by Kelley (1958) who gives an appli-
cation to curve fitting. He notes that the solution of
the linear programming problem implies the theorem of
De la Vallée Poussin.
The form of the dual program is

AT —A _ o
e (] @9
w> 0 4.5)
maximize z = [bT, —bT]w. (4.6)

Only one slack variable has to be added to (4.4) to make
all constraints into equalities (although an additional p
artificial variables are required to set up the usual
simplex tableau), and it is shown in Lemma 4.1 that
even this can be ignored.

Lemma 4.1. An optimal solution to the system (4.4)~
(4.6) with a non-zero slack variable is possible only if
w=20.

Proof. With the addition of the slack the constraints

(4.4) become
“e =0

AT
[
:l is an optimal solution with w = 0, w, %% 0,

Assume [W
ws
0] ==—1o]
=% ol
0 3 W, 0

and define
i=1

(4.7)

(4.8)

This vector satisfied all the constraints on the problem
and gives a value of the objective function

L7, b7, 0] m > W7, —87.01 [:]

Z= 5

=W

i=1

2n
because 3, w; <1 if w, %0 by the last equation of

i=1
(4.7). This contradicts the hypothesis that [:] is an
3,

optimal solution.
Remark. If w = 0 is an optimal solution then

xp+1=Z=Z=0

so that, by (4.1), r;, =0, i=1,2,...,n. This implies
the existence of an exact solution to the original set of
equations. We specifically exclude this case from con-
sideration. We assume w, = 0 in (4.7) and drop the
last column of matrix.
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Lemma 4.2. —max |b,| <z< max|bl,i=1,2,...,n
Proof. This is a direct consequence of

[eT, eTlw =1,

w>0,
and z =[BT, —bT]w.

Remark. This shows that the feasible region is bounded.
Lemma 4.3. If in applying the simplex algorithm to
the system (4.4)-(4.6) any column of AT and the corre-
sponding column of — AT appear together in the basis
then the current value of z < 0.

Proof. Consider the T problem obtained by deleting
all equations except those relating to columns in the
dual basis. The set which remains contains at most p
equations. Let this problem be solved by applying the
simplex algorithm to the dual program, then the optimal
basis for the reduced problem also contains a column
of AT and the corresponding column of — AT, Now if
a column is in the optimal basis for the dual the corre-
sponding equation in the primal is an equality (H. p. 239).
Therefore, for at least one i,

Xpp1 +ri=Xpp1— 1 =0

whence x,;,=0. Therefore the optimum for the
reduced problem is z = 0 whence z < 0 for the initial
basis.

Remark. We have excluded from consideration the
case where x,,, = 0 for the optimal solution. There-
fore progress can only be made towards a solution by
dropping one of the duplicated columns from the basis,
and a stage must be reached when they are absent. We
will assume that no basis contains columns duplicated
in this way.

It will now be demonstrated that the simplex algorithm
applied to the dual linear program is equivalent to the
Stiefel exchange algorithm. This result is contained in
Stiefel (1960). However, Stiefel eliminates the uncon-
strained variables from the primal before proceeding to
the dual. Also his argument is largely geometric and is
carried out for a small number of variables. We have
already shown that the elimination of the unconstrained
variables is unnecessary, and we demonstrate the
algebraic equivalence of the two methods.

A basic feasible solution to the linear programming
problem has at most p 4+ 1 non-zero components. By
the remark following Lemma 4.3 the columns of equa-
tion (4.7) which make up the basis correspond to a
reference for the original T problem. In the simplex
algorithm each basis matrix must be nonsingular, and
for this it is both necessary and sufficient for the matrix
A, associated with the corresponding reference to have
rank p. Note that the first p equations of (4.7) express
a relation of linear dependence between the rows of the
reference while the last equation can be interpreted as
imposing a scale. As A4, has rank p this relation of
linear dependence is unique, and this proves
Lemma 4.4. The non-zero components of a basic
feasible solution w are equal in modulus to the appro-
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priate components of the A-vector for the corresponding
reference. The A-vector is scaled so that the sum of the
moduli of its components is one.
Remark. The Haar condition is sufficient for the exis-
tence of a basis for the simplex algorithm but it is clearly
much stronger than necessary.
Remark. To each reference there corresponds two dis-
tinct bases for the dual program. Each basis determines
the same basic feasible solution, but the corresponding
values of z are opposite in sign. As the optimum value
of z is positive this fixes the basis of interest. This
corresponds to choosing the A-vector so that A;r; > 0.
Lemma 4.5. The value of z given by the basic feasible
solution is equal to the levelled reference deviation for
the corresponding reference.
Proof.

z = [b7, —b7|w

T p+l1
= BIM /3 A

by the previous Lemma,
= |Al

by equation (2.4).

Remark. Lemmas 4.4 and 4.5 show that the current
basic feasible solution provides a solution to the 7 problem
for the current reference.

Lemma 4.6. The choice of the vector to enter the basis
in the simplex algorithm is equivalent to choosing the
appropriate column corresponding to that equation of
(2.2) which has the residual of greatest modulus.

Proof. Adopting Hadley’s notation let

el = [bT, —BbT],
let B be the matrix of the basis vectors, and ¢y be the
" vector obtained from ¢ by deleting the components
corresponding to the nonbasic vectors. Let

AT _AT
z, = cEB“‘KS<|:eT — eT]> s=1,2,...,2n (4.10)

Now if a column is in the optimal dual basis then the
corresponding equation in the primal is an equality. By
the previous remark the current basic feasible solution
solves the T problem for the corresponding reference
and hence is optimal for this restricted problem.

Byes = [ 7]

where x is the levelled reference vector and 4 the levelled
reference deviation for the current reference.

“.11)

P
zZ,=h 3+ X a;.x, (4.12)
g=1

where j= s if s < n and the + sign is appropriate,

otherwise j=s—n and the — sign is taken. By
equation (2.2) this is equivalent to
zg=hIr,+cg. 4.13)
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The new column to enter the basis is that associated
with the largest positive value of ¢, — z, (H. p. 111).
Now

cc—zg=*+r,—h “4.14)

so that the value of r; of maximum modulus determines s.
We turn now to the question of determining the
column to leave the basis.
From equation (4.14) the column to be added to the

basis is e AT
[sgn rjlxj( ]

and this is expressible in the form

[sgn (r,-ixj(A T):I L4

= El Yix; (B). (4.15)

Assume that the kth column of B is to be deleted from
the basis. Labelling the new basis matrix B, we have

B = B(I + (y — el (4.16)
so that
_ 1 7\ o
B = (1- 50— edel)B-1.  (417)

Let w® denote the basic feasible solution for the new

basis. Then
= (T=5 G —eel)ws @19
Y
so that
. Yi .
W) = We)i — = (wph, ik
Ve 4.19)

= (Wp)i/Vk , =k

The column to be dropped from the basis is chosen so
that w§® > 0. Clearly it is sufficient to take

k: (Wgh/yi = min (wp),/y; for all i such that y; > 0.(4.20)

If the Haar condition does not hold then degeneracy
permits the possibility of cycling in the simplex algorithm.
However, this can always be resolved (see H. p. 174-196,
also Desclous (1961)).

It is a standard result that there exists a & if the linear
programming problem has a bounded optimum (H. p. 93).
Lemma 4.7. The equation to be dropped from the
reference in the Stiefel exchange algorithm corresponds
to the column to be dropped from the basis in the
simplex algorithm.

Proof. We show that the test given above for the
simplex algorithm is equivalent to the second test given
in Section 3 for the Stiefel exchange.

AT

o

We have
Vi, (AT
[sgn (rj);‘,( ):’ — By — ,: @.21)
where G is a diagonal matrix and G;; = g; (g was defined
in Section 2; but notice also the second remark following
Lemma 4.4) so that
_Gy:l _y

MT [sgn ¢ (4.22)
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By equation (3.4) it follows that

b= [s;nf:]

Now the column to leave the basis is given by

(4.23)

J: (wp);/y; = min (wg),/y; for all i such that y; > 0
= max (wg);/ (— »))
= max g;(wg)i/ (— &)
= max A/,

and this is the second test given in Section 3.

Theorem 4.1. The Stiefel exchange algorithm is exactly
equivalent to the simplex algorithm applied to the asym-
metric dual of the linear programming formulation of the
discrete T problem.

Proof. This is an immediate consequence of Lemmas
4-5-4-7 which itemize the major aspects of the equi-
valence.

5. Discussion

The Haar condition was not used in Section 4. All
that was required was the nonsingularity of the successive
basis matrices. The condition for this is that the matrix
of the constraints (4.4) has rank p + I, and for this it is
sufficient that 4 has rank p. This is much weaker than
the Haar condition, and it is remarkable that in at least
p + 1 of the equations (2.2) the residuals are equal in
modulus to z= x,;,. This follows from the result
used before (H. p. 239) that if a column is in the dual
basis then the corresponding equation in the primal is
an equality. Thus the classical theorem of De la Vallée
Poussin can be restated in the following more general
form.

Theorem 5.1. Let the matrix of the discrete T problem
have rank p. Then there exists a solution to this problem
for which the residual of maximum modulus is a mini-
mum. Further there is a reference on which the residuals
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some of the artificial variables will persist in the optimal
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more economical in storage than the simplex algorithm.
However, our second test of Section 3 would appear to
be necessary for its satisfactory implementation.

Certainly it is possible in the continuous case to
provide an algorithm which combines the merits of
both approaches. It is our intention to describe such
an algorithm together with some applications in a
further paper. A program for implementing the
simplex algorithm to solve the discrete T problem has
been given by Barrowdale and Young (1966).
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