
Some techniques for rational interpolation
By F. M. Larkin*

Simplified forms of Stoer's rational interpolation algorithms are presented as special cases of a
generalization of the Neville-Aitken method. These algorithms offer convenient means for
effecting rational interpolation in a given set of data points, either numerically or analytically.

1. Introduction

The problem of finding a rational function which
assumes given function values at prescribed positions of
the independent variable may be approached from
several viewpoints. One can, of course, assume an
explicit form for the function

i?(x) = r~ (1)

and attempt to determine the coefficients {ar; 0 </•</>}
and {br; 0 < r < q} from the p + q + 1 linear equations
which result from insisting that

K(xs)=fs;l<s<p+q + l, (2)

where the (distinct) interpolating points {(xs,fs);
l < 5 < / > + ^ + l} are given. Notice that, although
expression (1) contains p + q -f- 2 coefficients this
number can always be reduced by one by cancellation.
Thence, given that the interpolating function exists,
uniqueness follows from the fact that, if the linear,
homogeneous equations

/, £ bX = £ aXl K s < p + q + 1 (3)
0 0r=0

obtained from (2) have a solution in which the coeffi-
cients {ar} and {br} are not all zero, then this solution is
unique except for an arbitrary, non-zero, constant multi-
plying factor. Furthermore, this construction of R(x) is
entirely independent of the order of the given positions
{xs; l<,s<,p + q + l}. However, the amount of
numerical work involved in solving equations (3) for
the relative magnitudes of the coefficients makes this
approach less attractive than others.

The classical technique for constructing i?(x), in the
special case when/? = q, or q + 1, is due to Thiele (1909).
This special rational interpolating function T(x) is
expressed in the form of a terminating continued fraction

x — x,

+
x — x2

(4)

X — X P+ Q

ap + q

where the coefficients {ar; 0 < r < p + q) are deter-
mined by constructing a table of inverted differences, or
reciprocal differences, from the co-ordinates of the given
interpolation points.

Wynn (1960) and Stoer (1961) have given tabular
methods for the purpose of rational interpolation, Stoer's
algorithms being somewhat simpler than those of Wynn.
A further, slight simplification is achieved by casting
Stoer's algorithms in the forms to be discussed. More-
over, a conceptual advantage is obtained since the
forms presented here arise naturally as special cases of
a generalization of the Neville-Aitken method which is
described in another paper (Larkin, 1967).

2. Definitions and nomenclature
Consider a set of points {(xpf^J = 1,2...}. For

any j> \ the f} may be thought of as defined in terms
of some originating function/(x) by the relation

fj =/(*,)• (5)

We assume that Xj # xk unless j = k. The quantities
{Xj-;j — 1, 2 . ..} and {/};./ = 1, 2 . . .} may be real or
complex and their order in the implied sequence is quite
arbitrary. Our object will be to construct an array of
functions {fJk(x); j = 1, 2,. . .; k = 1, 2, . . .} each one
having the property that

except in certain special circumstances.
For ease of presentation it is convenient to arrange

these functions in a table of triangular form, as shown in
Table 1.

For any 7 > 1, k > 1 we shall refer to the set of points
{x/J < r < j + k} as the domain offJk(x), and we shall
write

j+k
Djk = u {*,}• (7)

r=j

Moreover, we define the domain of interpolation, D'k, of
fJk(x) as the set of points xs e Djk such that

f (x\ f (Q\
Jjk\xs) —Js- \°)

Thus, if equation (6) is satisfied we can write

Djk = DJk (9)

and in this case we shall say that the function fJk(x)
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Interpolation

A table

' /.i

fi
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Table 1

of interpolating functions

fxi

22 fit ' 4 •

fi.2

possesses Property I. By extension, we see that it is
reasonable to define

fjo =fj ; 7 = 1, 2, . . . (10)

and to say that the point AJ constitutes the domain of
interpolation oifj0, so that

Djo = r>jo ; 7 = 1 , 2 , . . .

Fig. 1 shows how a function fjk(x) stands, in a table of
the form of Table 1, in relation to its domain. Clearly,
if fjk(x) does not possess Property I

Djk C Djk. (12)

3. The triangle and rhombus rules
For the remainder of this paper we shall restrict our-

selves to consideration of the case where the {fJk} are
rational functions of x. In order to construct these
functions we shall make use of the two "triangle rules"

/ ; * = •

x)fj,k-l

and
xj + k xj

fjk =
Xj+k

X X: xj+k x

(13)

(14)

Jj+X,k-X fj,k-X

and the "rhombus rule"

f = f
J j k J j + X,k — 2

, xJ+k — xj

X — X,
+ •

xj + k ~~ x
.(15)

Jj+l,k-X Jj+X.k-2 Jj.k-X Jj+X,k-2

Equation (13) is, of course, the Neville-Aitken formula,
which, when the starting conditions

fro=fr I j < r < 7 + k (16)

are used, leads to interpolating functions

Fig. 1. The domain otfjk

such that/rJ is a polynomial of degree less than or equal
to s. Also, it is easily shown by induction that recurrence
formula (14), starting from conditions (16), leads to
functions of the form

/„ = { 2
(17)

where the coefficients {a,; 0 < t < s} are constants.
Moreover, provided that none of the given function
values {f/,j< r < 7 + A : } is equal to zero, all of the
functions constructed from them will possess Property I.

Before recurrence formula (15) can be applied, for the
purpose of generating the functions in the kth column
of Table 1, the two previous columns must be available.
It is shown in the following section that if the first few
columns of functions in Table 1 are constructed either
exclusively by recurrence (13), or exclusively by recur-
rence (14), and the succeeding columns exclusively by
recurrence (15), then all the functions in the table will
possess Property I, except in certain special circumstances.
Naturally, if there does not exist a rational function,
with prescribed degrees of numerator and denominator,
which interpolates a certain given set of points, we
cannot expect an algorithm to produce one.

Table 2a illustrates the use of formula (15), after one
initial application of the Neville-Aitken rule, in con-
structing a table of rational interpolating functions.
Table 2b illustrates the use of the same algorithm for
numerical interpolation at the point x = 3 • 5. The
values {(xr,fr); 1 < r < 6} are also discussed by Hilde-
brand (1956) as an example in rational interpolation.

Notice that the function/13(x) is peculiar in that it
does not possess Property I. The possibility of loss of
Property I, and the necessity of taking this into con-
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Interpolation

Table 2a

Example of a table of rational interpolating functions

j

1

2

3

4

5

6

xi

0

1

2

3

4

5

fj

2

3/2

4/5

1/2

6/17

7/26

A: = 1

4 - x
2

22-7x
10

14-3x
10

32-5x
34

304 - 37x
442

2

1 4 - 5 x

7 - x

1 0 - x

2+4x

2 2 - x
1 3 x - 1

4 0 - x
28x - 10

3

(2 - x)(4 - x)
2(2 - x)

x2 - lOx + 48
2(7x + 6)

X2 _ 14X + 136
2(33x + 4)

4

x + 2
j ^ 2 —j. J

x + 2
X2 + 1

5

x + 2
X2 + 1

Table 2b

Numerical rational interpolation at the point x = 3-5

j

1

2

3

4

5

6

0

1

2

3

4

5

fi

2

3/2

4/5

1/2

6/17

7/26

0-25

-0-25

0-35

0-426471

0-394796

2

— 1-0

0-406250

0-415730

0-414773

3

0-25

0-413934

0-415272

4

0-415094

0-415094

5

0-415094

sideration, accounts for much of the complexity in the
arguments of the following section. By consideration
of equation (15) in the limits as {x -> x,;j < r < j + k)
it is easily seen that/)* may lose Property I where x = xr
if any of the special relations

or

k-l(Xr) —fj+l, k-l(xr)

or

fj, k-i(xJ+k) —

fj + U k-l

Xj+k ~ Xr

/?.*-l(*,) - / / + ! . fc-2(*r)
= 0

=fj + l, k-2Kxj) holds.
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Interpolation

4. The algorithms and their resultant functions
The two algorithms for constructing tables of the

form of Table 1 which we shall consider are as follows:

Algorithm A,:
Use the Neville-Aitken recurrence (13) to construct the

first i columns of Table 1, i.e. up to and including the
column ofith degree polynomials. Then use recurrence (15)
to construct all succeeding columns of the table.

Algorithm i?,-:
Use recurrence (14) to construct the first i columns of

Table 1, i.e. up to and including the column of ith degree
inverse polynomials. Then use recurrence (15) to con-
struct all succeeding columns of the table.

It is obvious from consideration of the triangle and
rhombus rules that all the functions {fJk(x)} are rational
in x. Let us then write

and

JjkW ~
&>_£&<). .7 = 1 , 2 , . . .
*) Qjfc) ' k = 0, 1, 2 , . . .

where P*k{x) and Q*k(x) are polynomials in x having no
non-constant common factor. Pjk(x) and QJk{x) are
also polynomials, constructed from P*k(x) and Q*k(x) by
the following process:

(i) If fJk(x) possesses Property I

PjkV) = P*jkix)
QjkV) = fiyV

(ii) IffJk(x) does not possess Property I
Pj*M = Pjk(x).

(19)

where

• Ejk(x)

Ejkix) = II o) (x - xr).

(20)

(21)

At first sight the introduction of the quantities
{Pjk> Qjk}> by t n e above construction, seems rather
arbitrary. However, it turns out that they are actually
more fundamental to the theory than are the {P*k, Q*k},
as is shown by the following theorems and corollaries.

There seems to be no obvious reason why the degrees
of the polynomials PJk{x) and Qjk(x) should not increase
very rapidly with k. However, it turns out that these
degrees are the smallest possible, consistent with allowing
fjk(x) to possess Property I in the general case—an
assertion which is expressed more precisely in the
propositions which follow. Let us introduce the notation
deg {P} to indicate the degree of the polynomial P(x).
Now, using the above definitions of the polynomials
{P*k, Q*k, Pjk, Qjk), we have:

Theorem 1:
If Table 1 is constructed by the use of algorithm A,, the

kth column consists of rational functions satisfying the
conditions

deg {/»,*}<*
(22)

deg {/>,*}< m
l. (23)

The expression [y] indicates "largest integer not greater
than / ' .

Theorem 2:
If none of the given values {f/,r= 1, 2, 3, . . .} is zero,

and if Table 1 is constructed by the use of algorithm Bh
the kth column consists of rational functions satisfying
the conditions

deg{/>yfc}=0

and

deg {/>,*}<

deg {QJk} <

4±-T

(24)

(25)

Notice that the restriction in Theorem 2, that the
given function values be non-zero, is simply analogous
to the implied restriction in Theorem 1 that they be
finite. In fact, the functions generated by applying
algorithm B, to the given points {(xnfr); r > 1} are the
reciprocals of those generated by applying algorithm At
to the points {(xr, 1//,); r > 1}.

We now proceed with the proof of Theorem 1. The
proof of Theorem 2 will not be given, since it trivially
parallels that of Theorem 1.

Proof of Theorem 1:
Equations (22) simply state a well known property of

the Neville-Aitken algorithm, so our task reduces to
proving the truth of equations (23). This will be done
by induction, after noting that for k equal to i and i — 1
equations (23) are indeed satisfied.

For y > 1 and A: > i+ 1, we define quantities
ZJk, RJk, SJk and TJk by the relations

j+k-l

= n
r=j+l

= PjkQ

jkQj + \, k-1

(26)

,-2-Qjk (27)

-k.k-2-Qj.k-t (28)

(29)

By construction of the polynomials {Prs(x)} and {Qrs(x)},
we see that the right hand sides of equations (27), (28)
and (29) all vanish whenever

x = x,
such that

(30)
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Interpolation

so that Zjk must be a proper divisor of each of these
right hand sides, except possibly when one of them
vanishes identically. The case when one of the right
hand sides of equations (27), (28) and (29) vanishes
identically will be considered separately, so in the mean-
time we can assume

(31)

It is clear now that RJk, SJk and TJk must all be poly-
nomials; in the following Lemma we go on to show
that they must be polynomials of degree zero.

Lemma: Rjk, SJk and Tjk are all constants.
Suppose the polynomials {Prs(x), Qrs(x); r > 1,

k — 2 < s < A: — 1} all satisfy conditions (23). From
equation (28) we then have

deg{SJk.ZJk} < Max{deg{/>,.,*_,} + deg{(2,.+lrfc_2};

However, by construction

i.e. deg{SJk.ZJk} < k - 1. (32)

Similarly, from equation (29), we obtain

A : - l . (33)

- l , (34)

which enables us to deduce that strict equality holds in
equations (32) and (33), and that SJk and Tjk must be
constants, as required.

Now notice that equation (15) may be written in the
form

— xj X X;

l,k-2

Ilk \,k-2 Qi-

Pj+\,k-2

Qj+l,k-2

, xj+k ~ x

rl,k-\ i.fc-2

l,k-2

and that a factor J+y'k may be cancelled throughout,
leaving Jk

- n
K jk

(35)

We next multiply through equation (27) by (xj+k — xj)

R'jk

Kj + k — xand through equationthrough equation (28) by:

(29) by —=—-, and then combine the results linearly

with equation (35) to yield

pp
(Xj+k - Xj) - ^ = {

**-jk

= {X
)+1, k -1

rj,k-\

sJk •
(36)

Notice that, if the quantities Rjk, Sjk and Tjk were known,
equations (35) and (36) would provide separate, linear
recurrence formulae for the {Pjk} and {Qjk}.

Now, by construction, the only non-constant factors
common to Pjk{x) and QJk(x) are those occurring in
Ejk(x), denned in equation (21). But, since neither of
the right hand sides of equations (35) and (36) contains
a singularity in the finite part of the complex plane, RJk
must be a divisor of both Pjk and Qjk, and so it may
only consist of a product of single factors of the form
{x — xs), where

i.e. where

and ^ ^ *f.

However, from equations (35) and (36), we have

(37)

-* i U •* i U

j+\,k-l _|_ / v Y\ Pj,k-l— -f- (Xj+k — X). —

®Jk (^ v\ Qi+\,k-\ I (v v\Qj,k-\
\X — Xj) . — -f- \Xj+k — X) —

jk jk
(38)

and separate consideration of the three possibilities

j <s <j + k

P* (x)
leads to the conclusion that '„ . \ can only fail to equal

Qjk\xs)
fs when both numerator and denominator of the right
hand side of equation (38) possess a factor (x — xs).
But, if that is so, equations (35) and (36) indicate that
P O
—^ and -^- both vanish at xs, implying that P,k and
Kjk Kjk
Qjk both possess a factor {x — xs)

2, which is absurd
since the construction of Pjk and QJk ensures that a
common factor of the form (x — xs) can only occur
singly. This argument applies separately to all the
points

xseDJk — D)k,

thus enabhng us to conclude that Rjk must be a constant,
as required.
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To recapitulate, the Lemma shows that, under the
assumption of the induction hypothesis, the three
quantities R}k, SJk and TJk, appearing in equations (27),
(28) and (29), are all constants.

Before proceeding to determine the bounds on the
degrees of PJk and Qjk notice that, from equations (28)
and (29), we can write

Qj+l.k-2-
7 + 1 , * -

~~Sik~'

rQJ+\,k-\ Qj,k-i

Also, from equation (28) or (29), we have

k - 1< Max|T +l
2~ *j + deg{Qj+Uk_2};

(40)

and when k — Us even, k + / is also even, so equation
(40) becomes

k-l w (k + i - 2 k - i - 2
Max-! -i ;

} + ^

- 1 . (41)

Hence, we can deduce from equation (39) that

k—i—2 k+i—2 k+i
- 1

deg

.". deg

4̂
"yjfc J

sjk

k-i-2
(42)

Similarly, when k — Us odd, k + i is also odd, so equa-
tion (40) becomes

k - 1 < Max (k + i—I

k + i - 3 k - i -
+

i-\\
2 /

•"• deg{Gy+i,t-2} =
k - i - l

(43)

Hence, we can also deduce from equation (39) that

i - 3 k - i - l

2 ' 2
A: + i - 3

(44)

Now, from equation (42) and the induction hypothesis,
we can write

( 4 5 )

and from equation (44) and the induction hypothesis,
we can write

(46)

Hence, using equations (35) and (45), and the induction
hypothesis, we find

M « {[* \ l

i.e. (47)

as required. Also, using equations (36) and (46), and the
induction hypothesis, we obtain

(48)

2 I ' *' I 2

i.e. deg{/>A}<[*±i],
as required.

In the foregoing reasoning it was assumed that none
of the quantities Rjk, Sjk and Tjk vanished identically.
For completeness we now give separate consideration to
that possibility. Suppose, for example, that

Pj,k-\ -Qj + l.k-2 — fj + l,k-2-

i-e- fj,k-\ =/}+i,fc-2.

then, from equation (15) we see that

j,k-l = 0

(49)

(50)

thus satisfying equations (23) automatically. The same
conclusion follows if we suppose that either

Pj+\,k-\-Qj + \,k-2 Pj + l,k-2-Qj + \,k-\ = 0

o r Pjk-Qj+\,k-2 ~ Pj + \,k-2-Qjk ^ 0>

which finally confirms the truth of equations (23), under
the assumption of the induction hypothesis. However,
we need only recall that equations (23) are certainly
satisfied for k equal to i and / — 1 to see that the
induction is complete.

Corollary 1:
For all / > 1, k> i + 1,
except whenfjk =fj,k-i =fj + uk-\,

k + i
deg {PJk} = —r—, whenever k + i is even, (51)

and

fc i + 1
deg {QJk} = ^ , whenever k + i is odd. (52)
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Interpolation

To prove this, consider

Xjk = PjkQj.k-x ~ Pj.k-i- Qjk, (53)

which is a polynomial with zeros at the k points
{xs;j <, s <,j + k — 1}. Thus, unless X]k = 0, imply-
ing/}* =fj,k-i =fj+i,k-i from equation (15), we have

dcg {XJk}>k. (54)
Hence

k < Max {deg{PJk} + deg {<2y,*-i};

}. (55)

(56)

Thus, when k + i is even and A: > / 4- 1,

k < Max {deg {P,*} + deg {ey,*-i}; A: - 1}

Similarly, when A: 4- / is odd and k > / + 1,

A: < Max {k - 1; deg {/>,-,*_,} + deg {gyt

_,} = * + ^ ~ * and deg{QyiJ =

(57)
which completes the proof of the corollary.

Remembering the relations between the quantities
ip*ik> Q)'k> Ejk, Pjk, Qjk}, expressed in equations (18), (19),
(20) and (21) we see that fJk can only fail to possess
Property I by virtue of the cancellation of a factor EJk

from Pjk and Qjk. Thus, we can be sure that if

k 4- i
deg {P*k} = —x— when k 4- i is even

and

deg {Q*k} H when k 4- i is odd

^ must possess Property I, regardless of how many
times Property I was lost by functions in previous columns
of the table. By definition, of course, if a non-constant
factor EJk is common to PJk and QJk then fjk loses
Property I at the zeros of EJk.

Corollary 2:

The polynomials {PJk{x), Qjk(x); j>\, k > i 4- 1}
may be constructed from the recurrence relations

= ajk-i.x — ,k-\

— x)-Pj,k-\
(58)

where the constant weighting factors <xJk and f$jk are
chosen, not both zero, so that when k + i is even the
coefficient of *(*-0/2+1 jn Q.k vanishes and when k -\-i
is odd the coefficient ofx^k+i+ 1J '2 in Pjk vanishes.

This observation, which forms the starting point for
Stoer's development, follows from the results of the
previous Lemma and Theorem, and from equations (35)
and (36).

Corollary 3:

Iffjk(x) possesses Property I it is unique and independent
of the order of the given points {xr; j < r < j + k}.

This follows from considerations discussed in the
introduction.

As mentioned earlier, the proof of Theorem 2 follows
closely along the lines of the proof of Theorem 1.
Corollary 3 to Theorem 1 also applies to Theorem 2, as
do the following two corollaries which are analagous to
Corollaries 1 and 2.

Corollary 4:

If the functions {fJk} in Table 1 are constructed by
means of Algorithm Bh then for all j > 1, k > i + 1,
except whenfJk =fj,k-i =f/+i,k-i,

deg {Pjk} =

and

deg {&•*} =

k - i + l
2

k + i
2 '

, whenever k + i is odd (59)

whenever k + i is even. (60)

Corollary 5:

If the functions {fJk} in Table 1 are constructed by means
of Algorithm Bt the polynomials {Pjk(x), Qjk(x);
7 > 1 , A : > J + 1} satisfy the recurrence relations

Pjk = xjk • (x —

Qjk = xjk-(x — xj)-

1 ,k - 1

— x)-Pj,k-\
, (61)

where the constant weighting factors a.jk and fijk are chosen,
not both zero, so that when k 4- i is even the coefficient
of x(k~'^ll+l in Pjk vanishes, and when k + i is odd the
coefficient of x(-k+i+1)/2 in Qjk vanishes.

5. Further remarks on the algorithms
The successive advances in the degrees of numerator

and denominator of the function {fJk}, as k increases, are
shown schematically in Fig. 2. The three paths starting
from the square (0, 0) illustrate columnar progressions
of the three algorithms Au A3 and B4. Notice also
that all the {fJk} which are not either polynomials or
inverse polynomials can, in general, be constructed by
two separate algorithms; for example, functions with
numerators of degree 3, 4, 5, etc., and corresponding
denominators of degree 1, 2, 3 . . . etc., may be con-
structed both by Algorithm A2 and Algorithm A3.
Furthermore, it is clear that, by consulting the diagram
in Fig. 2, we can choose algorithms specifically for the
purpose of interpolating given points by a rational
function with prescribed degrees for its numerator and
denominator. Table 3 illustrates the use of Algorithm
A3 in constructing an interpolant with numerator of
degree 3 and denominator of degree 1.

Algorithm A, indicated by the solid line in Fig. 2, is of
particular interest since it completes the analogy between
the classical Newton-Neville-Aitken techniques for
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Fig. 2.—Representation of successive advances in the degree of
numerator and denominator or rational interpolating functions
with successive increments in k. n and d indicate permitted
maximum degrees of numerator and denominator respectively

Interpolation
polynomial interpolation and the Thiele continued
fraction method for the special type of rational inter-
polation mentioned in the introduction. It is well
known that the rationalized form of T(x), in equation (4)
satisfies the same restrictions upon the degrees of its
numerator and denominator as does fiiP+9+u con-
structed from the points {(xStfs); 1 < S < / > + # 4 - 1 }
by means of Algorithm At. Hence, if / , ,p + q+i pos-
sesses Property I it is unique and therefore identical
with T(x).

If we express the Newton interpolating polynomial
in the form

N(x) = bo + (x- *,){&, + (x - x2){b3 + ...
(x - xp+g)bp+g}}, (62)

where the constants {bs; 0 < s < p + q) are con-
structed by means of a table of divided differences, the
correspondence between the two forms of interpolation
is easily seen from Table 4.

It is of interest, also, to consider the limiting form of
the table generated by Algorithm ^4, (or, equally, by
Algorithm Bi) as the interpolation point x moves to

Table 3

Construction of a rational interpolation function of prescribed form

j

1

2

3

4

5

XJ

- 2

- 1

0

1

2

fj

1

2

0

0

1

k = 1

x + 3

2x

0

x-l

2

3x2 + 7X

2

X2 — X

X2 — X

2

3

5x3 + 6x2 - l l x

6

x3 - 6x2 + Sx

6

4

4x* + 3x2 - 7x
3(3x + 4)

Table 4

Blustration of analogy between Newton and Tbiele interpolations

Interpolating function

Method of constructing coefficients

Method of direct construction

N W

Table of divided differences

Neville-Aitken algorithm

T W

Table of inverted, or reciprocal, differences

Algorithm Ai
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Table 5 Then, from equations (58), recurrence relations for the
Scheme of calculation for rational extrapolation to infinity coefficients {pjkr} and {qJkr} may be written in the form

Pjkr = ajk-iPj+\,k-l,r-l ~~ xj -Pj + iyk _ | , r )

"T" Pik-(.xj+k-Pj,k-l,r / > y _ / t _ i i r _ i

Qjkr = ajk-\9j + l,k — ! , r —1 xj-Qj + \,k — l,r)

en
X2 J2

e
X3 Jl

e
Xi, 74

x5 h

e\2

21 ^13
e 2 2

31 ^23

^32

infinity. From Theorem 1 we know that, in general,
fJk(x) will have a simple pole at infinity when k is odd
and a finite value when k is even. Accordingly, let us
construct a table, of the same form as Table 1, by listing
extrapolated values of the quantities {fjk; j > \, k even}
in the even-A: columns. However, in the odd-A: columns
we shall list reciprocals of the residues, at the assumed
simple pole at infinity, of the functions {f]k;j > 1, k odd}.
Table 5 illustrates the scheme.

It is easily verified that the numbers {ejk;j > 1, k > 1}
may be constructed, both for odd and even k, by the
single recurrence relation

= es >k-2

Xj+k xj

\,k-\ — ej,k-\

with starting conditions

eJ0 = Ji
ei,-i = 0

(63)

(64)

We then consult the "highest-./" members of the even-A:
columns of Table 5 for estimates of the value of

lim f(x).

In the special case when

xj=j;j =1,2,3...

equation (63) reduces to

ejk = ej + i,k-2
ej + \,k-l

(65)

(66)

a formula which is given by Wynn (1958).
Notice that, whereas the direct application of Algo-

rithms {At} and {#,•} provides efficient means for inter-
polating numerically at a single, specified position x,
Corollaries 2 and 5 give us convenient methods for
evaluating the coefficients in the polynomials {PJk(x)}
and {Qjk(x)}.

Let us write

(67)

. (68)

with starting conditions

Pik. - i = 9jk. i = 0 ; j > l , k > 0 (69)

PjOO=fA.j> j ;

and for Algorithm At

(70)

%,fc-l,0 '

? /+ ! , * -1 ,0

,k-l,0 .

k < i,
(71)

" y f c -

ay* = ;

Pyfc = '

Pj,k~\,(k + i-\ ' -0/2

1j-V\,k-\,(k-i)l2\
; A: > i + 1 (73)

A: + i even.

Formulae (71), (72) and (73) are simply precise state-
ments of the obvious rules for choosing the {<xJk} and
{fijk} in order to suppress increments in the degrees of
numerators or denominators of the {fjk} at appropriate
stages in the construction of Table 1. Similar formulae
apply when constructing the interpolating functions
generated by Algorithm Bt.

Table 3 illustrated the construction of a rational
function having not more than one pole. Like Table 2,
it may be regarded as having been developed, either
directly from Algorithm A3, or by application of rules
(71), (72) and (73). From the latter viewpoint we can
regard/| 4, for example, as constructed from

5.(x + 2). (x3 - 6x2 + 5x) + (2 - x). (5x3 + 6x2 - 1 lx)

i.e.

6 { - 5(x + 2) + (2 - x)}

• 4x3 + 3x2 - 7x
14 ~ 3(3x + 4)

(74)
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Book Review
The Memory System of the Brain, by J. Z. Young, 1967, 128

pages. (London: Oxford University Press, 28s.)
In any computer, whether in flesh or metal, there must be
two main classes of mechanism, clocks and stores. This book
is a collection of lectures delivered by Professor Young in
California in 1964 about some properties of the latter, the
storage mechanisms, but "the Brain" is not of man but of
Octopus. As in other works in this domain the definite
article is still misleading, and authors may envy their Russian
colleagues whose language enforces ambiguity of reference.

Lacking a systematic functional taxonomy, neurophysio-
logists must be content with whatever information they can
glean from any creature whose behaviour can be observed
without too much disturbance or expense. Young and his
colleagues have exploited the cephalopod with incomparable
ingenuity and patience for many years and have been able
to identify specific structure-function relationships more
confidently than would be possible in a more advanced animal.

The natural history of Octopus is particularly fascinating
and this is surveyed in more detail in Young's longer work,
A Model of the Brain, but in these lectures too there is enough
detail for the reader to be able to identify not only with the
author but with the subject-animal. As Young admits, the
first step in cryptography is often to guess what the messages
are likely to be about, and here this means looking at the
submarine world with the large and liquid eye of an Octopus.
One has eight sensitive and powerful tentacles, excellent eye-
sight (with colour-vision) and a voracious appetite parti-
cularly for small crabs. One lives in a stone-built cottage
in a charming seascape but difficult of access. One can
crawl or boost one's power by jet-propulsion. When in
trouble one can withdraw to one's home behind a smoke
screen. The sea being, as we all know, cruel, one must
approach a doubtful quarry cautiously, ready to retreat at
once if it bites, but prepared to attack more quickly if it is
harmless and edible. One can learn from such experiences
in a few trials, remember the lesson for several weeks and
change one's mind if first impressions turn out wrong. One
has two memory stores in distinct locations each with
specialized storage elements. One is thus almost ideally
fitted to be the prey of the universal predator—the human
scientist. The only slight protection against extensive inter-
ference is that, living in salt water, one is unlikely to have
electrodes implanted in one's brain as happens to most
terrestrial animals. Surgical mutilation, however, cannot be
avoided, and it is mainly by this means that one contributes
to human knowledge.

What hypotheses have been constructed from observations
on this obliging beast ? The basic proposition is "that learning
consists in the limitation of choice between alternatives".
The establishment of the models of the alternatives in the
memory of an animal is "like the printing of a book in that
it involves selecting appropriate items from a pre-established
alphabet". But since each species of animal has a limited
repertoire of responses, its stock of symbols must also be
limited. "Brains are not general-purpose computers but
specialized analogues." Whether this last assertion is uni-
versally true and useful is still a matter for discussion and
experiment. The human brain seems to have such a vast
capacity and to be so nearly independent of hereditary con-
straints that any statement about the class of computer to
which it belongs would have to be qualified by definition of
the conditions in which it is to be used or studied.

No analogy or metaphor can conceal the overwhelming
magnitude of the human brain. That there are 10,000,000,000
neurons is bad, but not incommensurable with the imaginable
scale of the artificial molecular circuitry of the future. If
these were living flip-chips we could hope to penetrate their
logic. But on some of these cells there are at least 10,000
contacts and in some of these contacts there may be thousands
of sub-microscopic chemical vesicles.

It is because of this intractable complexity that Octopus
brain is so reassuring—combined of course with the sup-
position, based more on hope than conviction, that there
may be principles common to cephalopod, computer and our-
selves. Assuming that learning in all cases involves a modi-
fication of memory resulting from a choice between two
specific alternatives—a binary decision, how is this choice
or decision implemented? In the simplest models one can
start either with a system in which all channels start open
and those unused or ineffective are progressively blocked, or
with one in which no throughput is possible until associations
have been classified and accepted, when the appropriate
channels are opened for these specific contingencies. It is
the first system that is suggested by Young's studies of
Octopus, that is, learning by blocking un-needed channels.
From the biologic standpoint this hypothesis has the advan-
tage that the raw material for conditional inhibition is present
at an elementary level of evolution in the negative feedback
pathways that are so prominent in primitive reflex action.
The complementary positive feedback circuits exist, but they
would leave the alternative channels open, which would seem
extravagant.

{Continued on p. 189)
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