
The inversion of sparse matrices by a strategy derived from
their graphs

By A. Nathan and R. K. Even*

An algorithm is derived for the inversion of a matrix which makes use of the structure of the
associated flow graph. The flow graph is explored with the help of Boolean matrices in order to
determine an efficient strategy for successive elimination of variables. The algorithm reduces the
given matrix to a triangular one of lower order which is readily inverted.

1. Introduction
The solution of a set of simultaneous linear algebraic
equations is occasionally aided by an examination of an
associated graph. Thus Mason (1953, 1955) associates
a "signal flow graph" with such a set, and Coates (1959)
similarly defines his "flow graph", and both give equi-
valent (Desoer, 1960) topological rules for their solution.
Harary (1959, 1962) provides an algorithm for the
partitioning of matrices in order to simplify their inver-
sion. This algorithm is limited to directed graphs which
have weakly connected components, and allows only
identical permutations of rows and columns thereby
preserving the eigenvalues of the matrix. Dulmage and
Mendelsohn (1962) have replaced the directed by a
bipartite graph, and thus solve a stronger partitioning
problem. Parter (1961) shows how Gauss elimination
may occasionally be made more efficient by a prior
examination of a graph, while Steward (1962) examines a
table which essentially shows the topology of a graph in
order to determine the most efficient sequence of elimina-
tion. Steward has overlooked the fact that a purely
topological algorithm cannot be followed through;
rather at each step numerical values must be considered
for (using our terminology) zero-weight branches may
appear. In order to continue, it is then necessary to
change the graph into one of different topology.

The algorithm proposed in this paper, while efficient
only for sparse matrices, applies in general and leads to
the inversion of any non-singular matrix. It is based on
Nathan's (1961) converging algorithm for the solution
of signal-flow-graphs which consists basically of a
succession of cycles of two simple steps. Step 1 requires
the identification of a set of principal nodes; step 2 eli-
minates several nodes at a time if the graph is sufficiently
sparse. Each cycle reduces both the order and the sparse-
ness of the graph until a graph corresponding to a lower
triangular matrix remains. Nathan's algorithm is
primarily intended for manual computation, whereas
here we have machine computation in mind and use
Boolean adjacency matrices (Hohn and Schissler, 1955;
Seshu and Reed, 1961) for the exploration of the graph
and for the identification of suitable sets of principal
nodes.

The number of operations required by the proposed
algorithm is, in general, unknown, since it depends on
the topology of the graphs appearing in consecutive
cycles. In specific classes of problems much computa-
tional effort can be saved. Thus, Even and Wallach
(1966) apply the method to elliptic difference equations.

It appears that efficient strategies can be worked out
for further classes of problems, e.g., for the solution of
electrical networks or for the inversion of blockwise
fc-diagonal matrices.

2. Matrices and flow graphs
Let M = [my] be a non-singular matrix of order n in

which no principal diagonal element vanishes, i.e.
mlt ^ 0, V/.

We prove that there is no loss in generality, since any
non-singular matrix can be brought to this form by at
most a permutation of rows. Consider \M\, the deter-
minant of M. \M\ is a sum of products, each of n
entries in M, no two of which are in the same row or
column. Since \M\ =^0, at least one of these products
does not vanish, and there exists a permutation of the
rows of M so that the factors of this product lie on the
principal diagonal. Hall's (1956) algorithm may be
used to find the permutation.

Denoting the columns of the inverse of M, M~' = [*,,],
by Xj (y = 1, 2, . . . ,«) , so that M-[XU X,,. .., Xn]
= / = [/,,/2, . . . , / J a n d

= Ij(j= 1,2,...,n), 0)
where /,• is the yth column of unit matrix /, eqn. (1) may
be written in the form

(2)

where

0
1

= [&] = f

0 1 2. . . n
0; 0

M X, (3)
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Following Coates (1959), a flow graph (F.G.) is asso-
ciated with Tj and eqns. (2) in a one-one manner as
follows:

(a) The F.G. has a source node 0 and n nodes 1 . . . n.
(b) To each non-vanishing entry t$ of 7} there corre-

sponds a directed branch from node / to node k of weight
tk? • t$ corresponds to a "self-loop".

(c) The variable x,y- is associated with node i
(/ = 1 , 2 , . . . , ri) and the value xOj = 1 with source
node 0.

(d) The F.G. induces the constraints

S tf$>x,j= 0 (k = (4)

i.e., the weighted inflowing variables add up to zero at
each of nodes k = 1, 2, . . . , « .

Two facts are to be noted:
(i) M corresponds in a one-one manner to the sub-graph

of the F.G. formed by omitting source-node 0 and
the branches emanating from it.

(ii) There is a self-loop at each of nodes 1,. . ., n because
US * 0 (k = 1 , . . . , ri).

Solving the F.G. means finding xtj(l = 1 , 2 , . . . , ri),
and this is usually done by "node elimination". The
interested reader is referred back to Mason (1953, 1955)
or Coates (1959). Fact (ii) means that any node 1,2,.. .,n
can be eliminated from the F.G.

3. The principal node algorithm for F.G. solution
Step by step node elimination is a laborious method

for the determination of Xj, the/th column of M~'. If
M is a sparse non-singular matrix, it is much faster to
reduce the associated F.G. by the following algorithm
(Nathan, 1961).

Let G be the F.G. corresponding to eqns. (2). Denote
as a "proper loop" a loop that passes through each of
its nodes only once and is not a self-loop. Then:

(a) In G, select a set of "principal nodes" P which
includes source node 0 and further nodes so as to
break all proper loops, i.e. so that any proper loop
passes through at least one node eP.

(b) Eliminate all nodes $P. Denote the resulting F.G.
by G(1). Because any proper loop in G contains
at least one node eP, the eliminated variables are
readily expressed in terms of those associated with
the nodes sP.

Repeat steps (a) and (b) to obtain G(2), G(3),.. ., until
no proper loops are left. If required by the disappearance
of self-loops in some Gw, rearrange the sequence of the
corresponding equations so that MM is transformed into
Af(v)* having non-vanishing elements on its diagonal
(cf. Section 2), and continue with the associated F.G.,
G<">*, in lieu of G«.

For the inversion of M, of order n, j must assume all
values 1 , . . . , n. A change in the value of/ changes only
the Oth column of 7} (cf. eqns. (3)), i.e. the branch
emanating from source-node 0 in the F.G. flows into a

different node. No loop passes through the source node
and thus the successive sets of principal nodes and the
necessary row permutations are independent of j .

For the algorithm to progress, it is sufficient that the
sets of principal nodes have successively smaller numbers
of nodes. This can certainly be achieved provided that
in any graph containing at least one proper loop 3P
that does not include all nodes. But evidently, omitting
one of the nodes of a loop generates an admissible P.

We now give an algebraic formulation of the algorithm.
Step 1 determines a set of variables ("pivots") that are
to be eliminated in step 2: they are the variables associated
with the non-principal nodes.

After v such cycles have been applied to eqns. (1), one
is left with

M^XM = Jv"/v) (5)

where Af(v) is a non-singular matrix of order nv.
Applying next step 1 of the algorithm to eqns. (5), the

«v+1 "principal variables" are determined and the
equations are rearranged as

* f c >
(6)

where A^ is a («v — «v+ ,)x 1 vector of pivots and Xjr + t')

consists of the principal variables.
Elimination of Xff from eqns. (6) is carried out as

follows:

where
|-'MM; (9)

-lN%. (10)

If eqns. (5) are suitably ordered, no principal diagonal
entry in M(v) vanishes. M^ corresponds to a sub-graph
(of the F.G. corresponding to M(v)) that has no proper
loops, which means that its rows and columns can be
subjected to identical permutations in order to bring
M^ to a lower triangular form. Since such permuta-
tions do not change the product of the principal diagonal
entries, M^ is non-singular, and the elimination can
always be carried out.

4. Example
A simple example will clarify the algorithm. The

fifth column of the inverse of the coefficient matrix in
eqns. (11) is to be computed:
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Eqns. (11) are our eqns. (1) with j = 5, n = 6. The
corresponding F.G. is given in Fig. 1 where the principal
nodes (the choice of which is not unique) are encircled.

Fig. 1. Flow graph of the example

The matrices in eqns. (11) are partitioned according to
the elimination scheme dictated by this principal node
set.

Using eqns. (7) through (10), we eliminate the last three
variables in eqns. (11) as follows:

* 4 5

X55

-x6s-

=

• 1 "

aA

1

. -1 .

0 1-/

-1 - /

; (12)

aj—de c-\-e ef
b+d 0 - /

0 1 a3-fgj

bi b2 b3

bA 0 - /
0 1 by l-g.

(13)

Since mQ = 0, we permute rows 2 and 3 in M(I) and
N1}). Subsequently we bring row and column 3 in M(1)

and row 3 in N^ into leading positions, in accordance
with the F.G. of Fig. 2.

0

b3 | bx

bs | 0
b2

1

- 1

e

-gj

(14)

The variables xi5 and x25 are now to be eliminated by
the same procedure:

e - b3 — b2b5

5; (15)

Fig. 2. The rearranged F.G. of Fig. 1 after nodes 4 through 6
have been eliminated

(16)

and hence

= c2. (17)
Having found the value of x35, we substitute it in

eqns. (15) to find the values of x15 and x2s- Subse-
quently, x45, x55 and x65 are computed from eqns. (12).

The computation of any other column of M~' follows
the same steps, but only the matrices Njl) and Nf2) must
be recomputed.

5. Determination of principal node sets

5.1. Definitions of topological matrices
We require an algorithm for the determination of

principal node sets, and shall explore the structure of
F.G.'s by means of topological Boolean matrices.

Let G be a directed graph. With G we associate square
Boolean matrices whose elements are 0 or 1, and whose
rows and columns correspond to the nodes of G. For
the elements we have the operations of

union: l u l = l u 0 = 0 u l = 1, 0 u 0 = 0

and intersection:

l n l = l ; l n 0 = 0 n l = 0 n 0 = 0.

—> ay = b,j u cy;

au = u k(bik o cki).

Similarly, for matrices,
union: A = Bu C

intersection: A = BC <—

We define:

(a) The "^-connectivity matrix" C(A) = [djf] is
defined by

{1 if / ^ j and 3 in G a path from i to j
of length k;

0 otherwise.
C(1) = C is the "connectivity matrix" of G.
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by
(b) The "Jt-adjacency matrix" A™ = [of/] is defined

= A is the "adjacency matrix" of G.

(c) Matrix # « = [#*>] is defined by

(1 if i 7*= j and 3 in G a path from i to j of
J,(« = J length < k;
[ 0 otherwise.

(d) Ak, Bk, and Ck denote the Ath power of the corre-
sponding matrices.

(e) Gk denotes a graph that does not contain any
proper loops of length < k. Thus any G is a Gu

(J) In these definitions paths are simple, i.e. they
include no loops.

5.2. Properties of the matrices

(a) If i # j : (A')jj = 1 <—> 3 in G a path from i toy
of length < t.

E.g. (A2)u = u (aiu n auj)

which is 1 if and only if, for at least one value of u,
a-,u = auj — !•

Note that an = 1, Vi, and, more generally, that

(A% = 1 • (A% = 1, t>s.

This follows from

%=C/ [{A°)iunauj]
l

which is equal to 1 if (.A'),j = 1.

(6) Bw is produced from Ak by the substitution of 0
for all principal diagonal elements in Ak.

(c) If G = Gk: (C')y = 1, t < A:<—* 3 in G a path
from i to y of length /. It follows that in Gk,
C<'> = C, t < k.

The theorem is evidently true for k — 2, and the proof
follows by induction. Assume that in Gk, C

('~!) = C'~'.
Then

(C% = u [«?- ')«, r. cu;] = u [(CC- ')),„ n ca,]

and since, in Gk, (C
('~ 1))/, = 0, V/ when r < A:, we have

(C')y = u KCf'- ')),„ n C J .

Hence (C')y = 1 -<—> 3 in Gt at least one value of u
for which (C('~ 1})/B = cuJ = 1, i.e. 3 a path from i to u
of length t — 1 and a path from u toy of length 1.

Fig. 3 Fig. 4

As an illustration consider the graphs of Figs. 3 and 4,
which are, respectively, a G3 and a G> Using the sub-
script 1 in Gt and 3 in G3, we have
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C 3
2 =

c, =
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C? = C\; C?«+1 = Cl,q>\;A\ = A\,q>2.

From Cj5 = 0 it follows that Cf} = 0 and therefore that
there are no paths of length 3 in Fig. 3, but C\ # 0 does
not indicate that there are any in Fig. 4.

(d) Let

(18)= u [
H—1

Then, if G = Gk and 1 < r, s < k,
j(.r,s) _ j ^—>j in G a proper loop of length r + 1,
r -f 2,. .., or r + s passing through node t.

Indeed, since G = Gk, any contiguous sequence of
1,2,.. ., or k branches in G, excluding self-loops, forms
a (simple) path. It follows that </,(r-j) = 1 •«—> 3 in G
a path tu of length r and a path ut of length 1,2 or s.
But tut forms a proper loop of the stated length.

In particular, <//*>k) = d™ = 1 <—> 3 in G a proper
loop of length k -f 1, k + 2 , . . . , or Ik passing through
node t.

Property (d) is useful for the identification in Gk of
nodes taking part in loops of length k + 1, k + 2, . . .,
ox 2k.

5.3. The determination of principal node sets
Any F.G. is necessarily a G, in the sense of definition

(e). In order to determine a set P of principal nodes in
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Gu we first determine a subset P2cP which breaks all
loops of length 2. Next, P2 is "removed" from Gt by
omitting from it all nodes eP 2 and all the branches in Gt
connected with them. The residual graph is a G2. In G2,
subset P4 C P, which breaks all loops of length 3 or 4, is
determined. Removal of P4 from G2 produces G4.
The pattern is continued, producing

until a graph with no proper loops is reached. Then
P = P2 u P4 u Pg u . . . . The kth cycle produces P(2t)
and G(2t) and the sequence is broken off as soon as k
obeys

(number of nodes in G) — s < 2k; s = number of nodes
i n P 2 u P 4 u . . . uP( 2 t ) .

The process necessarily leads to a set P containing
fewer nodes than G, and this ensures the convergence of
the principal node algorithm.

Since C(1) = Bw = C, P2 is determined in G, through
the computation of

MT) — \CC\ (\<$\

cf. eqn. (18). d®) is computed for t = 1, 2, . . . until
the first value, t — t{ say, for which rf,(2) = 1 is reached.
Then tx^P2. Node tx is removed from Gt. Removal of
tt means the deletion of the corresponding row and
column in C. The process is repeated with the new
connectivity matrix, yielding t2, and subsequently t3, . . .,
until no loops of length 2 are left.

More generally, in G2*-i, P(2*) is determined by the
computation from eqn. (18) of
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'>]« (20)
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in a complete graph,/,(2) = (number of nodes) —1, V?.
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