
A numerical approach to biharmonic problems9

By Donald Gxeenspanf

A new numerical method is described for biharmonic problems. The essence of the technique is
to combine variations] and difference methods in approximating a functional for which the
biharmonic equation is an Euler equation. Typical problems and computer results are described.

1. Introduction
The solution of biharmonic problems has long been of
importance in the study of elasticity (see, e.g., references
[4], [7], [14]) and the advent of the high speed digital
computer has been conducive to the development of
new, and renewed interest in old, numerical techniques
for such problems (see [2], [3], [6]-[8], [11]-[13], [15],
[16]). We shall explore here a new numerical method
which is distinctly different from those already mentioned.

2. The problems
The two fundamental problems associated with the

biharmonic equation can be described as follows.
Let R be a simply connected, bounded region whose

boundary is S. The positive normal direction, when it
exists, at a point of S will be the outward direction. Let
<£,(x, y), <f>2(x, y) and <f>3(x, y) be defined on S. Then,

Problem 1. Find a function u(x, y) which is denned and
continuous on R u S, which satisfies on R the biharmonic
equation

and which satisfies on S the boundary conditions

u ^ $, (2.2)

be placed on Problem 1 since, as indicated in Section 4,
for the important case when R is rectangular all the
numerical difficulties present in Problem 2 are also present
in Problem 1.

3. Numerical preliminaries
For hx, hy positive constants, and for fixed

(x, y) e (R u S), the set of points (x + phx, y + qhy);
P = 0, ± 1, ±2 , . . . ; q = 0, ± 1, ± 2 , . . . , is called a set
of lattice points. The horizontal and vertical lines
through a set of lattice points will be called a set of
lattice lines. Now, define Rh to be those lattice points
which are also points of R and define Sh to be those
points of S which are also points of at least one lattice
line. With regard to R u S, then, Rh is said to be a set
of interior lattice points while Sh is said to be a set of
boundary lattice points. Throughout it will be assumed
that Rh contains m points, numbered 1, 2 , . . . , m, and
that Sh contains n points, numbered m + 1, m + 2,. . .,
m + n. Further, if a point (x, y) e (Rh VJ Sh) has been
numbered r, it will be convenient in practice to use the
subscript notation w(x, y) — ur.

Next, it will be useful to describe certain finite differ-
ence approximations for second order derivatives. For
this purpose, let the points (x, y), (x + hx, y), (x — hx, y)
be denoted 0, 1,2, respectively, as in Fig. l(a). Then
we shall utilize the well-known (see, e.g., Milne (1949),
difference approximation

— 2u0 u2.

If (x, y), (x, y + hy), (x, y — hy) are denoted by 0, 1, 2,
respectively, as in Fig. 1(Z>), a formula for uyy\o com-
pletely analogous to (3.1) is valid. Next let (x, y),
(x + hx, y) be denoted 0, 1, respectively, as in Fig. l(c).
Then, assuming a valid Taylor expansion, one has
approximately

Problem 2. Find a function w(x, y) which is defined
and continuous on. R ^> S, which satisfies (2.1) on R,
and which satisfies on S the boundary conditions (2.2)
and

=<£3. (2.3')

Although for Problems 1 and 2, above, existence and
uniqueness theorems are available under various restric-
tive assumptions on <f>u <f>2, <f>i and 5", (see, for example,
Miranda (1955) and Schroder (1943)) there exists, in
general, no constructive method for producing a solution.
For such problems, then, attention will be directed here
toward developing a high speed, digital computer
method for approximating a solution. Emphasis will
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Fig. 1

Similarly, if (x, y), (x — hx, y) are denoted 0, 1, respec-
tively, as in Fig. l{d), then one has

2(u{ —uo+ hxux\0).

(hx)
2 (3.3)

If (x, y), (x, y + hy) are denoted 0, 1, respectively, as in
Fig. l(e), then a formula for uyy\0 completely analogous
to (3.2) is valid, while if (x, y), (x, y — hy) are denoted
0, 1, respectively, as in Fig. Iff), then a formula for
uyy\0 completely analogous to (3.3) is valid.

4. The numerical method
Instead of approaching the problems of Section 2

directly, we shall consider (2.1) to be an Euler equation
(see Courant and Hilbert, 1962) and adapt the approxi-
mation method of Greenspan (1966) for minimizing the
associated functional:

2uxxuyy + u2
yy)dA. (4.1)

For fixed hx > 0 and hy > 0, construct and label Rh

and Sh as described in Section 3. Suppose the lattice
lines subdivide R into k* subregions Ru R2,. • ., Rk*.
If any one of these subregions has a polygonal boundary,
then further subdivide it into triangular regions by the
insertion of diagonals. Assume then that there results
finally a subdivision of R into k( > k*) subregions
Rx, R2, • • •, Rk> t n e respective boundaries of which are
Sl,S2,--,Sk, and the respective areas of which are
A{, A2, . • ., Ak. To each /?,; i = 1,2, . . ., k, associate
if possible on S, a point of Rh u Sh at which uxx and
uyy are known, or at which one can approximate uxx

and uyy by difference approximations uxx, , and uyy,,,
respectively, each of which utilizes only function values
at points of Rh and/or function values plus first order
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partial derivatives at points of Sh. Then, approximate
functional (4.1) by the function

k
2ux y _ •, }. (4.2)

Since Jk is a function only of uu u2, • • •, um, we attempt
to find an extremal of Jk by considering the linear
algebraic system

7>Jk
= 0 , r = 1 , 2 , . . . , m. (4.3)

Let the solution of system (4.3) constitute an approxi-
mation of u{x, y) at the points numbered 1, 2, . . ., m of

Illustrative example
Let S be the triangle with vertices (0, 0), (1, 0), ( | , 1).

(Consult Fig. 2 in connection with the present discussion.)
Let R be the interior of S and let

</>, = x3 - 2y2 on 5. (4.4)

Denote by Lu L2, L3 the sides of S which join (0, 0) to
(1, 0), (1, 0) to (i, 1), (I, 1) to (0, 0), respectively. Let

0 , on L,

6 , 4

(4.5)

In order to approximate the solution of the biharmonic
problem then defined by (2.1)-(2.3), set (x, y) = (0,0),
hx = i,hy = £. Construct the lattice lines and trian-
gulate those rectangular subregions which result, as
shown in Fig. 2, so that R is divided into the eighteen
subregions R\, R2, . . ., R^. Finally, to each /?,- asso-
ciate the vertex of the right angle of the triangular
boundary of i?,.
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Now, from (4.4) one knows u5, u6,.. ., ul6 exactly.
In order to calculate ux and uy at various points of Sh,
we shall utilize both (4.4) and (4.5) in the following
fashion. In general, let S be given parametrically in
terms of parameter s (arc length) from some fixed point.
Also, let s increase as one traverses S in the counter
clock-wise direction. Then by means of (2.2) one can

calculate at each point the tangential derivative — ,

provided it exists. Then (see Fig. 3), one has from the
definition of the directional derivative that

ux = un cos a — u, sin a
uy = un sin a + u, cos a. (4.7)

Thus, one can show readily with regard to (4.4), (4.5)
and Fig. 2 that

"*U = h uy\9 = 0 , ux\i5= -h,

ux\n= f f , w y | i i = 0 , w^|i6 =
M.yll6 = ~ f >

= 0. (4.8)

Next, for convenience, set

Thus
i = 1, 2 , . . ., 18.

•/,8 =

and we proceed to determine

r(l) T(2) 7(18)
J 18' 18' • • •' J 18 •

With regard to JlH, the area 4̂ j of R, is ̂ . Moreover,
since the point associated with Rt is the vertex of the
right angle of 5,, that is, the point numbered 1 in Fig. 2,
then

uxx\\

Thus

- jf - 2M, - M - 2 K , - V -

1/36

M5 — 2M,

1/36

«3 — J / — 2M,

1/36

1/9 1/9

<,'> = A [1296(2M, + J9i)
2 + 6 4 8 ( - 2 M , —«£) X

X ( - 2 M , + M3 - V) + 81(2«, - M3 + ¥)2l (4.9)

On the other hand, when considering a subregion like R4,

one has

— = ux cos a + uv sin a

- j - = Ux COS f a + =J + uy Sin ( a +2)- (4-^)

Hence, from (4.6), so that

Fig. 3

— M,6 —

uyy\l6

1/36

2(M2 — M,6 +

= + [5184(1/, 2592(M,

+ 324(M2 - -A)2]. (4.10)

Similarly, all the other J^l can be readily constructed.
It follows then that (4.3) is equivalent to the system

117M, + 6M2 — 20M3 + 6 M 4 = — 88-875

6M, + 125«2 — 80M3 + 16M4 = -20-148

- 2 0 M , - 80M2 + 134M3 - 80M4 = 11-083

6M, + 16M2 - 80M3 + 125M 4 = 9-875 (4.11)

The coefficient matrix of (4.11) is symmetric and positive
definite and the solution of the system is approximately

= -0-776 M2 = -0-179 «3 = -0-081 = 0-082.
(4.27)

However, the analytical solution of the given boundary
value problem is known in this case to be u = x3 — 2j>2.
At the points numbered 1, 2, 3, 4 then the exact solution
is

= — 4 1 J M 2 = — • M3 = — M 4 =

with which approximate solution (4.27) compares most
favourably.

Note finally that the method described in this section
applies even more easily to the prototype problems of
the second kind (see, e.g. [2]) described in Section 2.
For suppose S is a rectangle and R is the interior of S.
Without loss of generality, assume that the sides of 5" are
parallel to the x and y axes. Then condition (2.3') is
equivalent to prescribing uxx on the vertical sides of 5"
and uyy on the horizontal sides of S. Moreover, from
(2.2) one can calculate explicitly uxx on the horizontal
sides of S and uyy on the vertical sides of S. Thus, uxx

and uyy are known at each point of S, and hence of Sh,
and there is no need to approximate these at points of
Sh. The resulting calculation, and hence the numerical
method itself, thereby simplify considerably.
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5. Further examples
A number of examples in which S was selected to be

square, rectangular, triangular and trapezoidal have been
run on the CDC 1604 and the CDC 3600 at the University
of Wisconsin. The following typical ones are presented
to illustrate the ease with which the method of Section 4
can be applied.

Example 1. All the details were the same as in the
illustrative example of Section 4 except for the choices
hx — 0 025, hy = 0-050. The resulting set of 361 linear
algebraic equations was solved by successive over-
relaxation with zero initial vector and o> — 1-85, deter-
mined by the method of Carre (1961). The running
time on the CDC 1604 was 29 minutes and the number
of iterations was 370. The maximum error was 0 0097
and it occurred at the point JC = 0-4750, y = 0-4000.

Example 2. Let 5 be the square with vertices (0, 0),
(1, 0), (1, 1), (0, 1) and let R be the interior of S1. Define

<f>t = x3 - 2y\ on S. (5.1)

Let the sides of the square joining (0, 0) to (1, 0), (1, 0)
to (1, 1), (1, 1) to (0, 1), (0, 1) to (0, 0) be denoted,
respectively, by Lu L2, L3, _L4. Define

{
4y, on L,

3x2, on L2

-4y, on L3

-3x 2 , on LA. (5.2)
In order to approximate the solution of the biharmonic

problem then defined by (2.1)-(2.3), (5.1) and (5.2), we

set (x, y) = (0, 0) and hx = hy = 0 05. R was triangu-
lated in a fashion analogous to that described in the
illustrative example of Section 4 and to each subregion
R; was associated the vertex of the right angle of the
boundary 5, of Rr The system (4.3) of 361 linear
algebraic equations which resulted in this example was
solved by successive over-relaxation with zero initial
vector and co = 1-7. The running time on the CDC 3600
was 24 minutes and the number of iterations was 1101.
The maximum error was 0-00035 and it occurred at the
point x = O-65, y = 0-50. The exact solution is
u = x3 - 2y2.

With regard to the latter example, it is also of interest
to note that when the grid was selected with hx=hy—0 • 01,
then the convergence of successive over-relaxation with
each of o> = 0-5, 0-6, 0-7,. . ., 1-9 was so slow that
no significant results were obtained, even though the
CDC 3600 was allowed to compute for periods up to
three hours.

6. Concluding remarks

For the method of this paper, convergence proofs
and treatment of curved boundaries for large classes of
problems have been given only recently [5]. No error
estimates are as yet available, since the method of proof
in [5] is that of the classical calculus of variations.

Note also that the method of Section 4 can be modified
easily so as to incorporate higher order formulas for
numerical integration and differentiation. Recent cal-
culations indicate that such modifications often result
in increased accuracy when the given data is sufficiently
smooth.
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