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(5.3)

All three formulae use twenty-seven points per sub-
interval. With h = \, (5.3) gives the approximation

and lower-sign formulae give errors of —0-000 011 343
and 0-000 007 835, respectively. For h = \, when each
formula uses 216 points, (5.3) gives an error of
0-000 000 067 and the two formulae (4.11) give errors of

0-725 524 912 with error 0-000 034 104, while the upper 0-000000 002 and 0-000 000 003, respectively.
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Gaussian numerical integration of a function depending
on a parameter

By H. Tompa*

It is shown that the advantages claimed for Romberg integration for the computation of definite
integrals as functions of a parameter can also be obtained by using Gaussian integration, and
that the latter is usually more economical in terms of computer time than the former.

In a recent note Rabinowitz (1966) drew attention to
the advantages of using Romberg's technique (Romberg,
1955, and references given by Rabinowitz) for the inte-
gration of a set of functions depending on a parameter
a if the integrand is of the form h(x, a) =f(x).g(x, a).
The advantage of Romberg's technique lies in the fact
that the value of the integrand is required at fixed values
Xj of the abscissa and so /(*,) can be stored after it has
been first computed and need not be recomputed for
each value of a; Rabinowitz gives the outline of a very
ingenious FORTRAN program for putting this idea
into effect.

Gauss' H-point formula for numerical integration has
the advantage of giving higher precision for a given
number of points at which the integrand is computed,
but has the disadvantage of using different values of the
abscissa for different values of n; at first sight this dis-
advantage seems to be overwhelming when the function
to be integrated depends on a parameter. It is, however,
possible to use an algorithm with a series of w-point
Gaussian formulae with a fixed set of increasing values
of n, so that the part f{x) of h(x, a) which does not
depend on a need only be computed once, but now at
the abscissae corresponding to all the w-point formulae
used; the abscissae and weight factors are available for
all values of n up to 64 (Gawlick, 1958) and for some
higher values (Davis and Rabinowitz, 1958).

It is the purpose of this note to show that the total
number of points at which the integrand has to be com-
puted is usually smaller in this scheme than in Romberg
integration or in adaptive Simpson integration quoted
by Rabinowitz.

It seems reasonable to take a set of values of n forming
a geometric series, nj = nxq

j~l, and we assume that the
required precision of the integral be reached with the
Ar-point formula. Then the integral has to be evaluated
(i + 1) times to confirm the precision, where «,• is the
first integer of the set of n which equals or exceeds k.
The integrand is computed N times where

N=
1

and if we put n^ql~x equal to k, which is approximately
so, we have

N = (kq2 - nx)l{q - 1).

The value of N is a minimum for given k and «, if
q = 1 -f- (1 — njk)112, which is just below 2 since k
will usually be much larger than nv

The integrals from 0 to 1 of the seven functions which
Rabinowitz has evaluated by Romberg integration and by
adaptive Simpson integration to a precision of 10 ~3 and
of 10~6 have been evaluated using a set of n-point
Gaussian formulae with three series of values of n. In
the first two series the values of n form a geometric series
with q = 2, in series A with n, = 2(2, 4, 8, 16, . . .), in
series B with w, = 3 (3, 6, 12, 24, . . .); the third series,
C, consists of the values of n of both series A and B in
increasing order so that the ratio of successive values is
alternatively 3/2 and 4/3 (2, 3, 4, 6, 8, . . .). Table 1
gives the total number of points at which the integrand
has been computed until two successive values of the
integral agreed with a relative error of less than 10 ~3

or 10~6, respectively; the corresponding figures for
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Table 1

Number of points at which the integrand has been computed for Romberg (R), adaptive Simpson
(AS) and three schemes of Gaussian integration (A, B, C) in order to obtain the integral from 0 to 1
of the seven functions given in col. 1 with relative errors below 10~3 and 10"6, respectively. The
minimum number of points used is 9 for R, 19 for AS, 6 for A, 9 for B, 5 for C. Figures in parentheses
are extrapolated values.

R AS A B C

Function f(x)

X1'2

X3'2

1

1 + x

1
1 + X4

1
1 + exp (x)

X

exp (x) — 1

2
2 + sin 10 -nx

10-3

65

17

9

17

9

9

65

io-6

4097

129

33

65

17

17

257

10-3

55

19

19

19

19

19

163

10~6

199

91

55

67

19

19

883

10-3

30

14

14

14

6

6

(254)

io-6

(254)

62

30

30

14

14

(510)

10-3

21

9

9

9

9

9

189

io-6

189

45

21

21

9

9

(381)

10-3

23

9

9

9

5

5

219

io-6

219

51

23

23

9

9

(443)

Romberg integration and adaptive Simpson integration,
as given by Rabinowitz, are also shown.

It is evident that this algorithm of Gaussian inte-
gration is in no way inferior to Romberg or adaptive
Simpson integration, and that there is not much to
choose between sets A, B, and C, with a slight preference
for the last. It is to be expected that some adaptive scheme
in which the integral is suitably subdivided will bring
about an improvement for the last function because of
its periodicity and for the first function because of the
singularity of the derivative at the lower limit of inte-
gration. This has been confirmed in the latter case; if
the integral 0 to 1 is evaluated as the sum of the integrals
0 to 0-14 and 0-14 to 1, the values given in the table
for sets A, B, C are reduced to 20, 18, 14, respectively,
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for a relative accuracy of 10~3 and to 156, 114, 130,
respectively, for a relative accuracy of 10~6.

There would be no difficulty in applying Rabinowitz'
scheme for computing f(x) only once at any of the
abscissae used in this scheme so that all the advantages
claimed for Romberg integration in the evaluation of a
definite integral as a function of a parameter are also
obtained by the present scheme.

Note added in proof: At the time of writing, the formula
with n — 96 was the highest-order Gaussian formula
available to the author, and the precision of higher-
order formulae was estimated by extrapolation; since
then formulae with larger values of n have become
available (Stroud and Secrest, 1966).
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