
Algorithms Supplement

Previously published algorithms

The following algorithms have been published in the Com-
munications of the Association for Computing Machinery
during the period January-April 1967.

294 UNIFORM RANDOM
Generates the next uniformly distributed pseudorandom
number on an interval (A, B) using the multiplicative con-
gruential method.

295 EXPONENTIAL CURVE FIT
Uses a least squares method to determine the parameters
a, b, c of a curve f(x) = a + be~cx which approximates n
data points (xh yf) with associated weights p,.

296 GENERALIZED LEAST SQUARES FIT BY
ORTHOGONAL POLYNOMIALS

Obtains the coefficients of the best fitting polynomial of given,
or less, degree to a set of observations (x,-,./;) each with its
associated weight wt.

297 EIGENVALUES AND EIGENVECTORS OF THE
SYMMETRIC SYSTEM

Solves the equation iA — \B)X = 0 for symmetric A, B
provided one of these is either positive or negative definite.

298 DETERMINATION OF THE SQUARE-ROOT OF
A POSITIVE DEFINITE MATRIX

299 CHI-SQUARED INTEGRAL
Finds the probability that X2, on f degrees of freedom, exceeds x.

300 COULOMB WAVE FUNCTIONS
Evaluates the Coulomb wave functions, FL and GL, and their
derivatives for all L in the range (0, Imax).

The following algorithms have been published in Numerische
Mathematik during the period July 1966-August 1967.

(a) VAN DER MONDE SYSTEMS AND NUMERICAL
DIFFERENTIATION

(b) THE JACOBI METHOD FOR REAL SYMMETRIC
MATRICES

(c) RATIONAL CHEBYSHEV APPROXIMATION
USING INTERPOLATION

id) SOLUTION OF SYMMETRIC AND UNSYM-
METRIC BAND EQUATIONS AND THE CAL-
CULATION OF EIGENVECTORS OF BAND
MATRICES

(e) NUMERICAL QUADRATURE BY
EXTRAPOLATION

if) CALCULATION OF THE EIGENVALUES OF A
SYMMETRIC TRIDIAGONAL MATRIX BY THE
METHOD OF BISECTION

ig) CALCULATION OF THE SINE, COSINE AND
FRESNEL INTEGRALS

The following algorithms have been published in Nordisk
Tidskrift for Informationsbehandling during the period
January-December 1966.

Contributions
17 LIST PROCESSING
18 PROCEDURES FOR SIMPLIFYING BOOLEAN

EXPRESSIONS
19 EIGENVALUES OF A COMPLEX MATRIX BY

THE QR-METHOD

Papers
(a) THE SUMMATION OF SOME SERIES WITH

VARIABLE COEFFICIENTS BY APPROXIMATE
ANALYTICAL EXPRESSIONS

(*) ON THE COMPUTATION OF CERTAIN FUNC-
TIONS OF LARGE ARGUMENT AND PARA-
METER

(c) A SET OF PROCEDURES MAKING REAL
ARITHMETIC OF UNLIMITED ACCURACY
POSSIBLE WITHIN ALGOL 60

Algorithms
Algorithm 20.
PERMUTATIONS OF THE ROWS OR COLUMNS OF

A MATRIX
J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

procedurepermx (a, b,j, k, r, n,p, control); value n, control;
real a, b; integer j , k, n, p, control; integer array r;
comment A procedure using Jensen's device which may be used
to permute the rows or columns of a matrix A[\ : n, 1 : n] in
any of the ways specified by either pre-multiplying or post-
multiplying A by a permuted identity matrix Ir or its inverse
Ir~

l. The permutation matrix is not stored explicitly but is
defined by the permuted identity vector r[\ : n]
so that

/,['".'•[/•]] = 8tf,/r- |Wi>U] = 8«
where Sy is Kronecker's delta.

For example r = 3, 1, 4, 2 defines either

Ir: 0 0 1 0 or I~l: 0 1 0 0
1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0

The parameter control should be positive to achieve pre-
multiplication by Ir or post-multiplication by Ir~

l, negative
otherwise. The following examples of procedure calls illustrate
how to obtain each of the four possible operations.

206

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/206/336929 by guest on 13 M
arch 2024

Algorithms Supplement

1. Premultiplication by Ir : permx(A\j,p],A[k,p]J,k,r,n,p,\)
2. Postmultiplication by Ir : permx(A[p,j],A[p,k],j,k,r n p, — 1)
3. Premultiplication by Ir~

l:permx(A[j,p],A[k,p],j,k,r,n,p,—1)
4. Postmultiplication by I~x:permx(A[p,j],A[p,k]J,k,rji,p,\);

begin integer i, ri, t, q; real w;
procedure ritoi;
comment uses the permutation vector r[l : ri] to achieve

a permutation of the form NEfV[i]:= OLD[r[i]],
i = l , 2 , . ..,n;
begin for i : = n step — 1 until 2 do
begin ri : = r[i];
L: if i^=ri then

begin if ri>i then
begin ri : = r[ri];

goto L
end;
j := i; k: = ri;
forp : = 1 step 1 until n do
begin w= a;

a:=b;
b:= w

end
end

end
end ritoi;
procedure itori;
comment uses the permutation vector r[l : n]
to achieve the inverse permutation to that of
procedure ritoi viz NEfV[r[i]]:= OLD[i], i = 1, 2 n;
begin for / : = « step — 1 until 2 do

begin i:= t; ri:= r[i];
L: iiij^ri then

begin for q: = t + 1 step 1 until n do
if i=r[q] then
begin i:=q;

goto I,
end;
j:= i; k:= ri;
for p: = 1 step 1 until n do
begin w:=a;

a:=b;
6:= w

end
end

end
end itori;
if control>0 then
ritoi
else

end permx

Algorithm 21.
SOLUTION OF POLYNOMIAL EQUATION USING
THE METHOD OF BA1RSTOW

J. M. Watt,
Department of Computational

and Statistical Science,
The University,
Liverpool, 3.

Author's Note:
The algorithm uses the method of Bairstow (Wilkinson

(1963), Ralston (1965)) to find approximations to the roots
of a polynomial equation of degree n.

When run using the Whetstone compiler on the KDF9
computer (which uses floating point numbers with a precision
of 12-J- decimal digits in the range from 10~38 to 10+38) with
eps[\] = eps[2] = eps[3] = 10—6 the Bairstow algorithm
successfully found all the roots of the 45 polynomial equations
given by Henrici and Watkins (1965) as corrected by Thomas
(1966) with the following exceptions.

(1) The roots of the 13th polynomial of Table 2, which is
of degree 36, were not found, the computer failing due to
calculated numbers falling outside the allowed range. (The
remaining polynomials had degree 19 or less.)

(2) In the case of polynomials 4, 6, 9, 10, 11 and 12 of
Table 1 which have repeated or very close zeros the accuracy
of 5 significant figures was not always achieved. When in
an attempt to achieve higher accuracy all the polynomials
were re-run with eps[l] =0 , esp[2] = eps[3] = 10—6 the
process did not converge in 250 iterations for polynomials 4
and 11. The remaining polynomials never needed more
than 84 iterations per quadratic factor, and 5 figure accuracy
was achieved in all zeros except those of polynomial 12 of
Table 1 which has the zero 2 repeated four times.

(3) A further error was found in Henrici's results for poly-
nomial 18 of Table 1, which has zeros as follows:

-0-49591 ± 0-90230, 1-6553 ± 2-2243, 3-6813

References
RALSTON, A. (1965). A First Course in Numerical Analysis.

New York: McGraw-Hill Book Co.
WILKINSON, J. H. (1963). Rounding Errors in Algebraic

Processes. London: H.M.S.O.
HENRICI, P. and WATKINS, B. O. (1965). Finding Zeros of a

Polynomial by the Q-D Algorithm, Communications of the
Association for Computing Machinery, Vol. 8, pp. 570-4.

THOMAS, R. F. (1966). Corrections to the Numerical Data
on Q-D Algorithm, Communications of the Association for
Computing Machinery, Vol. 9, pp. 322—3.

procedure Bairstow (n,a,x,y,eps,N,nor);
value N, eps, n; integer N,n,nor; array a,x,y,eps;
comment. The procedure uses the method of Bairstow to
find approximations to the roots of the nth degree polynomial
equation with real coefficients.

a[0]x" ... +a[n]=0.

(But the quadratic factors of the deflated polynomial are not
"purified" in the original polynomial, due to the difficulty of
ensuring that convergence of an ill-conditioned factor occurs to
the "same" factor in the original polynomial.) On exit the
real and imaginary parts of the rth root are given in x[r] and
y[r] for r = 1, 2, . . . , (« — nor) respectively. Zero roots are
given first and there is a tendency for the remaining roots to
be given in order of increasing magnitude. The first root of a
complex pair has positive imaginary part, and its exact con-
jugate follows immediately. The result "nor" is the number of
roots that the procedure has been unable to find. The maximum
number of iterations used to find a single quadratic factor is
"N". {A value of N = 100 is recommended although most
factors will be found with about 10 iterations.)

A quadratic factor x2 + px + q is accepted as soon as

1. The remainder when the original polynomial is divided by
the product of this factor and all those accepted so far
has coefficients less than eps[l] in modulus.

207

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/206/336929 by guest on 13 M
arch 2024

Algorithms Supplement

2. The calculated corrections to p and q are less than eps[2]
in modulus.

3. The relative corrections to p and q are less than eps[3] in
modulus.

Precautions are taken to avoid division by zero, and to avoid
large corrections to p and q. Zero leading coefficients are
first removed—if all coefficients are zero, nor := » + 1. Then
zero roots are removed before the main iterative cycle is entered.
If the resultant polynomial is of odd order, the linear factor is
found last.

Parameters
n: The order of the polynomial, n > 1

The polynomial is a [0]*" + «[1]JC"-' + . . . + a[n]
y: The roots are x[r] + iy[r]for r = 1, 2, . . . , (« — nor)

eps: eps[l], eps[2], eps[3] are the precisions described above.
A zero value of eps[l] can be used but eps[2] and
eps[3] should be non-zero.

N: The maximum number of iterations allowed to find a
quadratic factor.

nor: The number of roots that the procedure has been unable
to find;

begin array b,c[—1 :/»]; integer nl,m,i,j,k;
real p,q,T,M,det0,det\,det2,dp,dq,T0,Tl,r0,rl;
6[0]:= c[0]:= l ; / » : = ? : = b[—1]:= c [- l] : = 0;
comment Remove zero leading coefficients;
for i := 0 step 1 until n do if a[i]#0 then goto A;
nor := n + \; goto Exit;

A: T:= l/a[i]; nor:= i; n:= n—i;
fory":= 1 step 1 until n do b\J]-= a[i+j]xT;
comment Remove zero roots;
for m: = 0 step 1 until n do
if b[n— m]^=0 then
goto B
else
x[m+1]: = y[m + l]:— 0 ;

B: for nl:— n—m step —2 until 2 do
begin comment This loop is obeyed once for each quadratic

factor;
m:= n—nl;
comment Find quadratic factor;
if nl>2 then
begin p: = p+eps[2]; q: = q+eps[2];

comment Set up initial values of p,q;
for k: = 1 step 1 until N do
begin comment Iterate for quadratic factors;
step: for i: = 1 step 1 until nl do

c[i]: = b[i] -p X c[i-l]-q X c[i-2];
for / := 1 step 1 until nl—2 do
c[i]:= c[i]-pxc[i-l]-qxc[i-2];

T0:= c[ni-2\; Tl := c[nl-3];
M:=qxT\+pxT0; detO:= TOxTO+MxTl;
det2:= TOxrO+MXrl; det\:= TOxrl-TlXrO;
comment Check for convergence;
if abs(rO)<eps[l] A abs(rl)<eps[\] then
goto reduce;
M:= abs (det\)+abs(det2);
if M=0 then
begin comment Take action if the equations for dp

and dq are singular;
p:= 101 Xp+eps[2];
q:= 101 xq+eps[2]

end
else
begin comment Find dp and dq making sure that they

are not too large. Check for convergence;
M:= M/(lOx(abs(p)+abs(q) + lOOxeps[2]));
M:= l/(if M<abs(detO) then
detO
else
if <fert)>0 then
M
else
-M);
dp:= Mxdetl; p: = p+dp;
dq:= Mxdet2; q:= q+dq;
if abs(dp)<eps[2] A abs(dq)<eps[2]
V abs(dp)<abs(p) Xeps[3] A abs(dq)
<abs(q)xeps[3] then
goto reduce

end
end k: Exit is to the Label reduce if convergence is
achieved in less than N iterations;
nor:= nor+nl; goto Exit;
comment Divide out by quadratic factor;
reduce: for i:= 1 step 1 until nl—2 do
b[i]:= b[i]-pxb[i-l]—qxb[i—2]

end
else
begin comment;/ the polynomial has been

reduced to a quadratic;
p:=b[l];q:=b[2]

end;
comment Find zeros of quadratic factors;
M:= -0-5xp; T:= MxM-q;
if 7*>0 then
begin x[m+2]: = M+(if M>0 then

sqrt(T)
else
-sqrtiT));
x[m + l]:= q/x[m+2];
y[m + \]:=y[m+2]:=0

end
else
begin x[w+1]: = x[m+2]: = M;

y[m + l]:=sqrt(-T);
y[m+2]: = -y[m + l]

end
end nl: All pairs of zeros have now been found;
comment Treat possible remaining linear factor;
if ((«—;w)-̂ 2) x 2=£n—m then
begin x[n]: = —b[\]; y[n]:= 0
end;

Exit:
end Bairstow

Note on Algorithm 19. COMPLEX
B. H. Rudall,
Computing Laboratory,
University College of North Wales.

An alternative and more concise form of the procedure arg
has been suggested to me by I. D. Hill, Medical Research
Council. This version has been amended to include a jump
to a non-local label indeterminate when the form a[0] = a[l]
= 0 occurs on entry to the procedure.

208

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/206/336929 by guest on 13 M
arch 2024

Algorithms Supplement

real procedure arg(a); value a; array a;
comment assigns the argument of a to the identifier arg
where —pi < arg < pi;
begin real pi; pi : = 3 141592654;

if a[0] = 0 then
begin if«[l] = 0 then

goto indeterminate
else
arg := 0-5 x pi x sign(a[l])

end
else
begin real w;

w := arctan(a[l]/a[0]);
if a[0] < 0 then
w : = if w > 0 then
w — pi
else
H- + pi;
arg :— w

end
end arg

Correspondence

The Editor,
The Algorithms Supplement,
The Computer Journal.

Sir,
I must protest, in a friendly way, at the sentence in your

Editor's comment (1967) which reads Efficiency of computer
use should not be a consideration.

I hope that what you meant was that an algorithm that
takes a lot of computer time should not be ruled out solely
for this reason. Some jobs are necessarily lengthy, and the
use of necessary computer time should not be regarded as a
sin. Your remark appears, however, to mean that the use
of unnecessary computer time is not a sin either, and this is
quite unacceptable.

What do people want from published algorithms ? I suggest
that the main requirement is that when one wishes to perform
an operation on a computer, for which a published algorithm
exists, one should be able to take that algorithm and incor-
porate it into one's program with a high degree of confidence
that it will produce the right answer, and that it will do so
efficiently.

I have heard it argued that if one is interested in efficiency,
then one should not be using ALGOL. This reminds me of
the argument that because a lot of money has been spent on
Project A, therefore a lot is available for Project B. Exactly
the reverse is true. If the programming language is inefficient,
it is even more necessary that the program should be as
efficient as possible, within the limitations of that language.

ALGOL is an accepted language for publications because
of its international status, its availability on a wide range of
machines, its clear and unambiguous definition in the ALGOL
Report (notwithstanding a few minor errors and difficulties),
and its easy intelligibility to the human reader. But one does
not necessarily have to retain the ALGOL language to use
a published algorithm; often translations are made. If, for
the sake of increased speed, one translates an ALGOL pro-
cedure into machine code, one does not wish to be translating
an inefficient method.

Those of us who believe in ALGOL, as the language in
which we wish to do the great majority of our computer work,
are interested in the efficiency of the entire operation—not only
the use of computer time, but the use of human time as well.
The efficiency of being able to write things down and expect
them to work correctly first time; the efficiency of being able
to take separately written procedures and throw them together
to make a program, knowing that they will not be incom-
patible; the efficiency of being able to look at a program a
year after it was written and see at a glance what it is doing—
these factors are not to be despised.

I. D. Hill,
Medical Research Council,
115 Gower Street,
London W.C.I.

Reference
Algorithms Supplement, The Computer Journal, Vol. 9, p. 418.

Editor's comment
The statement about Efficiency of computer use which has

been mentioned above was intended to be interpreted as
follows.

Certain classes of algorithm, for example those connected
with compiling techniques and other branches of non-
numerical analysis, become very inefficient when written in
ALGOL 60. Nevertheless such algorithms will not be
rejected because they are inefficient. They are of value as
an aid to human understanding.

Clearly all algorithms, particularly those which are intended
for direct machine use, should be as efficient as it is possible
to be within the limitations of the language used. However,
an algorithm must not be penalized because the languages
available are unsuitable.

This difficulty can be eased by extending the range of
languages in which algorithms may be written. This con-
sideration, together with the ones above and those of Mr.
Hill, have been included in the Statement of Policy given
below.

I shall be pleased to hear from anyone who feels that some
point made in the Statement of Policy is not clear or that the
statement is inadequate.

Statement of Policy

A contribution to the Supplement may consist of an algorithm,
a note on a previous algorithm or a letter to the Algorithms
Editor.

A contribution which is a new algorithm must consist of a
program or a section of program written in any fully docu-
mented and widely used advanced programming language.
In this context ALGOL 60 (1963), FORTRAN (1966) and
COBOL (1967) are acceptable. Other similar languages are
acceptable, but only if the submitted algorithm exhibits
features which cannot adequately be described in any of the
above languages. Symbolic assembly languages are not
acceptable. The decision as to whether a particular language
is acceptable for a given algorithm rests with the editor.

An algorithm written in ALGOL 60 must be a self-
contained procedure. An algorithm written in FORTRAN
must be a self-contained sub-program. An algorithm written

209

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/206/336929 by guest on 13 M
arch 2024

Algorithms Supplement

in COBOL must be a complete program. In this context,
self-contained means that the algorithm must not use any
non-local identifiers (other than standard function names)
or any COMMON areas and that all input-output must be
through formal parameters. An algorithm written in
ALGOL 60 or FORTRAN may consist of a set of related
procedures or sub-programs. In this case the algorithm
must include a calling sequence showing how the procedures
are to be used (e.g. see Rudall, 1967). These conditions may
be relaxed but only if the author can provide sufficient reason
for so doing.

An algorithm should include comment and may be accom-
panied by an author's note where this would be helpful.
Information describing the organization of the computation,
the standard constants used, etc. should be given in the
comment. Information describing the method used, the
environment in which the algorithm has been written and
tested, the computing times achieved, etc. should be given in
the author's note. References must be given in accordance
with Notes on the submission of papers, a revised version of
which was first published in Vol. 10, No. 1, p. 120.

Algorithms which are published may be of two kinds,
those which are for computer use and those which are for
human understanding. Algorithms for computer use must
satisfy the rigid conditions laid down below but need not be
fully commented. Algorithms which are published in order
to indicate a method, which is intended to be understood and
adapted before it is used on a computer, need full commenting
but need not necessarily satisfy the conditions on machine
efficiency. If an algorithm is of the latter type then this
should be clearly stated in the author's note.

An algorithm must be written to conform with the appro-
priate reference document (see references below), it must be
submitted in duplicate and be typewritten double-spaced.
Where material is to appear in bold face it should be under-
lined in black. Where the correct character does not exist
on a typewriter it should be inserted neatly by hand in black
and not replaced by a similar typewritten character (e.g. I> is
not an acceptable substitute for >) . Where the language
itself, or easy reading of the language, demands it, correct
indentation is essential. The algorithms published in this
issue show what is required in the case of ALGOL 60.

An algorithm must be accompanied by a driver program
incorporating it, test data and test results. These must also
be in duplicate but may be in a modified version of the lan-
guage applicable to a particular computer and may have
been prepared on the off-line editing equipment of that
computer. Authors should be prepared, if asked, to supply
one copy of the paper tape or cards used. For algorithms

written in COBOL the driver program and algorithm will be
the same.

For an algorithm to be accepted for publication it must
either be original or be an improvement on or an extension
of an existing algorithm. It must also make a substantial
contribution to the existing stock of algorithms. It must be
syntactically correct, produce the results claimed, not lead to
unnecessary demands on computer time and/or space and
use the language specified in as neat a way as possible. It
must not use constructions whose results are not uniquely
defined (e.g. y : = x + f(x) where f(b) is a function which
alters the value of b). Where cases of failure may occur they
must be explicitly mentioned in the comment. Where the
specified language allows sections of program written in
machine code, these may be referred to by a suitable calling
sequence, provided that the effects of the sections are trivial
and are fully explained in the comment. Approximate
numerical constants must be written as constants and the
constants must be defined in the comment.

Every effort is made to see that all published algorithms
are completely reliable. In particular, all algorithms are
submitted to independent referees and extensively checked.
Certifications must add something to what is known about
the algorithm and must take the form of a note. Notes
which point out defects in or suggest improvements to pre-
viously published algorithms are particularly welcome. To
help to prevent printing mistakes, galley proofs will be sent
to the authors wherever possible. Whilst every effort is
made to publish worthwhile algorithms, no liability is
assumed by any contributor, the editor or The Computer
Journal in connection therewith.

The copyright of all published algorithms remains with
The Computer Journal. Nevertheless, the reproduction of
algorithms is explicitly permitted without charge provided
that where the algorithm is used in another publication
reference is made to the author and to The Computer Journal.
In the event of the formation of a National Library of
Algorithms, all algorithms which have appeared in The
Computer Journal will be made available to this Library.

A small number of reprints will be available to authors.

References
(1963) Revised Report on the Algorithmic Language

ALGOL 60, The Computer Journal, Vol. 5, pp. 349-
67.

(1966) A.S.A. FORTRAN.
(1967) A.S.A. COBOL. (In draft)
RUDALL, B. H. (1967). Complex, Algorithm 19, The Computer

Journal, Vol. 10, pp. 112-13.

Contributions to the Algorithms Supplement should be sent to
P. Hammersley

University Mathematical Laboratory
Corn Exchange Street

Cambridge

210

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/206/336929 by guest on 13 M
arch 2024

