
Correspondence

To the Editor,

The Computer Journal.

Sir,

Paging and segmentation

After attending the meeting at Imperial College on Virtual
Address Spaces, I get the impression that a clear statement
in your pages as to the difference between paging and seg-
mentation would not come amiss. The distinction is very
simple, but owing to the pragmatics of the situation, every
attempt to go into detail is apt to obscure the simplicity. In
brief, then:

Paging is an engineering device of which the programmer
need be in no way aware;

Segmentation is a programming situation in which
addresses pi, pi, p3,. . . can be indexed using i\, ii, i3,. ..
and if pj =£ pk then no choice of values for ij, ik can ever
make pj + ij equal to pk + ik.

The definition of segmentation is equivalent to stating that
every address is an ordered pair of integers with no theoretical
upper limit on either member of the pair. Of course even
unsegmented addresses, which are single integers with no
theoretical upper limit, must have an upper bound in any
actual machine, and we are all familiar with the difference
this creates between the abstract program and the real one
whenever the requirements of the program approach this
bound. When addresses are segmented, flexible upper
bounds to each segment and to the number of segments used
must ensure that the total store called for does not exceed
that of the machine.

Now for some of the puckishly obscurantist pragmatics.
(1) A programmer who knows the relative times taken by
addition, multiplication and division can write more efficient
programs than one who does not. In the same way, it may
be to a programmer's advantage to be aware of the paging
in a given system. This must not obscure the fact that there
is never any necessity for him to be aware of it. (2) Equally,
of course, a programmer can ignore any possibility of seg-
mentation which he may be offered, but this is trivial—he
can equally ignore the existence of a multiplication order
and write his own software to replace it if he wishes. (3) A
paging system is probably the most efficient way of imple-
menting segmentation. This is possibly the main cause of
the confusion which still exists in some places and which it
is the object of this letter to dispel. Let us consider a specific
example.

Imagine a machine whose instruction format contains a
20-bit address field but whose actual store is only 215 words
of a rather slow core store. Initially, the programmers put
up with all this—use only the first 215 addresses and accept
the slowness of access. Then the engineers get to work.
First they install 210 words of fast core store. This is not
used to increase storage capacity but to increase speed; each
block of 25 words in it is a copy of some corresponding block
in the main store which is currently being heavily accessed.
The programmer knows nothing about this (except to rejoice
in the increased speed), choice of which "pages" to keep in

fast store at any moment being a matter decided by the
system, which has to keep a record of which pages are cur-
rently in the fast store and where, and to divert accesses from
main store to fast store when possible. The machine now
has paging; unknown to the programmer a limited part of
the main store is mapped into the fast store. But now the
engineers take a second step. They arrange for a precisely
similar mechanism to map a part of the virtual (i.e. address-
able) store of 220 words on to the real main store of
215 words. This means that the programmer effectively
has 25 virtual store areas each of 215 words maximum
which he can use in any way he likes subject to a
total aggregate in all areas of 215 words. If he uses
each area reasonably (and this would include keeping several
stacks, each one in a separate area), he knows that no
area can overflow into the next, since "physical store
full" is bound to be signalled before any single virtual
area becomes full. The programmer now has a simple form
of segmentation, and, far from being unconscious of it, he
will probably be quick to exploit it.

The moral of this story is that the segmentation could be
provided even though the fast store were not. The mapping
which it demands must, to be economic, be done in units
longer than a word, and thus, in a sense, in pages. But with
the figures from the previous paragraph it is quite likely that
these "pages" would be 210 words long (as opposed to the
25 of the fast store paging) in order that both mappings could
be from a 10-bit into a 5-bit field, and the same "design"
(hardware and software combined) could be used for both.
The figure illustrates this:

virtual store
address segment no.

I I
word number

page no. word no.

main store address

fast store address

Other arrangements are possible; where the maximum size
of a segment is not equal to the main store size, the inde-
pendence of segments can be secured by a trap on carry
from word-number field to segment-number field when
indexing.

Yours faithfully,

BRYAN HIGMAN

University of London
Institute of Computer Science,
44, Gordon Square,
London W.C.I.
19 April 1967.

216

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/216/336936 by guest on 13 M
arch 2024



Correspondence

To the Editor,

The Computer Journal.

Sir,

I am rather a tyro as far as analogue computers are con-
cerned, and what I have to say may well have been said before,
though I have not found any record of it as yet.

Coming from a background of digital computers, it appears
to me that analogue computers are at present in the same
state as regards programming as were their digital counter-
parts twenty years ago, when the programmer had to translate
his thoughts into a binary code punched on teleprinter tape.
The user of an analogue computer must translate his logical
model into a patch-board, which he has to wire up himself.

It would surely be greatly to the advantage of analogue
computer users (and manufacturers) if they could specify
their problems in a high-level language, which could then be
translated automatically into a patch-board diagram, and the
patch-board could then be automatically wired up. They
would then be in at least as happy a position as Fortran users,
perhaps happier if they could agree on a standard language
and learn from the mistakes made with digital computers.
This state of affairs could be brought about by stages, some
of these performed in parallel, and each stage being useful
by itself or in conjunction with past stages.

1. A patch-board wirer, accepting a punched paper tape
in whatever code is most convenient, and automatically inter-
connecting the required terminals. The logic of this piece of
hardware would be similar to that of a telephone exchange,

though it is to be hoped that the service would be a bit more
reliable, and the difficulty would be to keep the price down.
I believe there exist already devices which set the potentio-
meters to the required values, thus completing the hardware
necessary to set up the computer automatically.

2. A high-level language, together with a digital computer
program to compile this into an intermediate language. The
intermediate language being an abbreviated form of patching
instructions, such as "B4O-P3U", meaning "connect the
output of amplifier B4 to the upper end of potentiometer P3".

3. A digital computer program to compile the inter-
mediate language into the code required for the patch-board
wirer.

4. When once the previous stages have been completed, a
system of automatic re-scaling is performed by a multi-access
digital computer, to which the analogue computer is linked.
Up to this point the compiler of stage 2 would require scaling
factors as input, but at this stage it would become possible
to manipulate these automatically until the analogue com-
puter is working at maximum accuracy.

No doubt, being a novice in this area, I have left out some-
thing vital, but I should be interested in the comments of
those more versed than I in the use of analogue computers.

Yours faithfully,
I. D. CRADDOCK

8, Wardie Road,
Edinburgh 5.
22 May 1967

To the Editor,

The Computer Journal.

Sir,

In a recent paper Welsh and Powell give a method for
finding a bound to the chromatic number of a graph and
indicate an application to the examination timetabling
problem, referring to a paper of mine. Unfortunately this
reference is misleading to the casual reader and possibly to
the authors. l a my paper I obtained a solution to an example
in 14 periods and pointed out that by inspection of the
incompatibility table it could be deduced that this was the
best possible solution. Welsh and Powell apply their method
to the data in Table 2 (the incompatibility table) in my paper,
and by coincidence find that their bound for the problem is
14 periods. This bound, however, is a bound to a different
problem, namely a case in which there is only one paper
per subject.

The fact that some subjects have more than one paper
increases the number of nodes in the graphical representa-
tion and also the number of edges joining incompatible nodes.
In my example using the number of papers per subject which
can be extracted from Table 3, the resulting chromatic
number bound increases to 23 which although a significant
improvement on the cruder bound max (dj) = 32 is still poor
by comparison with the true minimum of 14.

Chromatic numbers and timetabling problems

This is not an isolated case. In two recent timetables
produced at St. Andrews the corresponding figures are

Case 1

Case 2

MINIMUM

7

not known

ACTUAL
SOLUTION

8

18

CHROMATIC
BOUND

14

31

MAX (dj)

28

41

It should also be noted that these bounds take no cog-
nizance of additional conditions such as subject A must
precede subject B, subject C must be in a certain period,
papers of subject D must not be consecutive and so on.

Yours faithfully,
Computing Laboratory, A. J. COLE
University of St. Andrews (Dr. A. J. COLE)
19 June 1967.

References
WELSH, D. J. A., and POWELL, M. B. "An upper bound for

the chromatic number of a graph and its application to
timetabling problems", The Computer Journal, Vol. 10,
pp. 85-86.

COLE, A. J. (1964). "The preparation of examination time-
tables using a small store computer", The Computer Journal,
Vol. 7, pp. 117-121.

217

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/2/216/336936 by guest on 13 M
arch 2024


