The Atlas compiler system
By D. Morris and J. S. Rohl*

This paper describes those features of the Atlas system which comprise the supervisor/compiler
interface, with particular reference to how an Atlas Autocode user sees them.

A design aim of the Atlas system was to produce a wide
choice of programming languages which implies, of
course, a number of compilers. Further it was intended
that the majority of these would be developed by jobs
run within the normal system. Therefore, the supervisor
contains facilities for:

(1) specifying the compiler to be used at the start of a
job

(2) calling compilers into store within a job

(3) replacing the system copy of a compiler by a
modified version.

The system runs with a permanently mounted super-
visor tape which contains the supervisor and the com-
pilers. Whenever the supervisor is restarted, it (or more
strictly the main part of it) is transferred to main store
in which it operates. The compilers are transferred to
main store as required and are generally lost when
compilation ends. A facility known as batch processing
exists, by means of which selected compilers could be
retained for subsequent jobs, but the large storage
demands of user jobs has precluded its use.

A job specifies the required compiler by the statement

COMPILER (name)

in its job description. Its position on the supervisor
tape is then found by looking up the entry for that name
in the compiler directory, within the supervisor. This
directory contains information such as

(1) compiler name
(2) internal number
(3) address on tape
(4) maximum size.

All compilers on tape are preceded by a title block which
gives its size in blocks and the main store address to be
associated with each block transferred to store. Nor-
mally these will be consecutive but a certain amount of
scatter can be accommodated. The address assigned to
the first block of a compiler is taken as its standard entry
point.

It quickly became apparent that frequent modification
of the supervisor tape created maintenance problems.
Therefore the instructions described below for calling
and redefining compilers were extended to function on
non-listed compilers which are stored on private (user)
magnetic tapes. Only the standard compilers are now
stored on the supervisor tape.

Atlas instructions in which the most significant func-
tion digit is a 1 cause entry to a subroutine specified by
the rest of the function digits. They are called extracodes
and both the call compiler and define compiler instruc-
tions are of this type. The input parameters to the sub-
routines are the first modifier (Ba) and the result of
modifying the address part of the instruction by the
second modifier (N).

Call compiler extracode

This routine operates in two modes. If the bottom
digit (0) of N is zero then digits 2 — 23 define the internal
number of the compiler to be called. Its address on the
supervisor tape is found by looking up N in the compiler
directory, and the compiler is transferred into store. If
digit 0 of N is a 1 then N is decoded thus:

BLOCK ADDRESS TAPE NO 0|1

23 98 210

and the compiler is read from the specified block on the
specified tape. In both cases if Ba is zero, control is
transferred to the standard entry point of the compiler,
but if Ba is non zero control is transferred to Ba.

Define compiler extracode

Ba for this extracode is the logical number of the
magnetic tape on which the compiler is to be recorded.
The supervisor tape is denoted by 127. N is the address
of the first of five 24-bit words describing the compiler.
The first of these contains the first four characters of the
compiler name, which may extend into the second.
Within each half word if there are less than four characters
they should be right-justified and filled out with zeros.
The address of the compiler on tape will be found by
looking up this name in the compiler directory. Pro-
viding tape 127 is not specified, the address can be given
instead of the name. In this case the first half word
must be zero and the second should contain the compiler
address. The remaining three 24-bit words are

(1) address of the compiler in store
(2) address of the end of the compiler in store
(3) address where the compiler is to operate.

This last address will also be regarded as the compiler

* Depariment of Computer Science, University of Manchester, Manchester 13.

B

227

¥20Z Iudy 61 uo 3senb Ag 800v61/222/S/0L/811e/|ulwoo/wod dno-ojwepeoe//:sdiy wolj pepeojumod



Atlas compiler system

standard entry point. If the compiler address on tape
is specified by name its size will be checked against the
maximum size listed in the supervisor’s compiler
directory.

Compiler Compiler facilities

Since most of the compilers on Atlas were written
using the Compiler Compiler, then it was natural that
these extracodes be formally embedded in it. The
master phrase DEFINE COMPILER was introduced
for replacing standard compilers. The action of the
associated routine is best explained by means of an
example:

DEFINE COMPILER AA

ATLAS AUTOCODE

The define compiler routine first remembers the name
of the compiler being defined, here AA. It then reads
in the following line of text, adds the current date to it
and stores the resulting record within the compiler for
use as described below. It then sets up the appropriate
parameters and obeys the define compiler extracode.

Whenever the compiler is subsequently used, the
initial entry routine will always print out the record
described above. Thus from the output we are able to
tell which compiler was used to run any program, a
useful piece of knowledge in the period immediately
following the commissioning of a new compiler.

Because of the large amount of input involved in
writing compilers they are defined in a number of steps.
This was encouraged by two of the characteristics of the
Compiler Compiler system. Firstly, the Compiler
Compiler accepts the definitions of a language (both
syntax and semantics) and the total becomes a compiler
for this language. At the end this compiler can accept
further definitions to expand itself. Secondly, the Com-
piler Compiler uses a sliding store principle. Each item
(phrase definition, routine, etc) is intrinsically relocatable,
i.e. all addresses are relative. When a second copy of
an item is presented to the Compiler Compiler, it is
compiled on to the end, then the relevant part of the
compiler is moved down over the space occupied by the
first copy. Thus an obvious way of developing a compiler
is to define it initially in a number of steps, then as tests
indicate faults in the compiler, to produce correction
tapes from which updated compilers can be created.
This process can be continued until the compiler is “bug
free”. The same principle can also be used when modi-
fications are being made to increase efficiency.

Since the supervisor tape contains only the standard
compilers, all development is done on private magnetic
tapes. As mentioned earlier this requires the ADDRESS
on a magnetic tape to which the compiler is to be defined.
Since numbers are more susceptible to punching and tape
reader errors, with consequent overwriting of valuable
information on other parts of the tape, a simple scheme
was devised to enable users to give compilers defined in
this way (called SPECIAL COMPILERS) a name

228

rather than a number. The tape to be used must be
defined in the job description, and given the logical
number 1.

DEFINE SPECIAL COMPILER AAl
COMPILER AAl

has the following effect. Firstly, the date is added to
the string “COMPILER AA1” and the resulting record
stored in the compiler for printing out on all subsequent
entries. Secondly, block 1 of magnetic tape number 1
is read into the store. The user will have previously
written a directory of names and addresses of all his
compilers on this block. This directory consists of pairs
of 24-bit words, the first being the first four characters
of the compiler name (left-justified and filled out with
zeros if necessary), the second the block address of the
compiler on tape 1 coded as for the call compiler extra-
code. These pairs are preceded by the number of com-
pilers on the tape. This table is searched for the name
AAL1 and if found, the compiler is defined on this tape.
As a further aid to the elimination of confusion due to
accidental overwriting the name of the compiler is
printed out thus:

COMPILER AA1 DEFINED

If the compiler name does not appear in the directory,
then a fault is monitored:

COMPILER AAl1 NOT AVAILABLE

Most of the Atlas compilers were developed this way
using the “father and son” principle. The first tape
used the CC to define a special compiler say AAIL.
Then AA1 was used to define say AA2, AA2 to define
AA3 and so on.

Compiler Special

As mentioned earlier these special compilers are not
on the Supervisor Tape but on private tapes, and a new
compiler, COMPILER SPECIAL, was written to access
them indirectly. We describe its action with respect to
the following statement in the job description:

COMPILER SPECIAL
AAl

Compiler Special, reads in the symbols on the next line,
ignoring set and shift characters and all characters after
the first 4, reads down block 1 of magnetic tape number 1,
which contains the same directory as was used to define
the compiler, and looks for the name in this directory.
From the address in the directory, it can call the special
compiler AA1 by means of the call compiler extracode.

Atlas Autocode facilities

Atlas Autocode (AA) is an ALGOL-like language
which has been described elsewhere (Brooker, Rohl and
Clark, 1966) but those characteristics which are impor-

¥20Z Iudy 61 uo 3senb Ag 800v61/222/S/0L/811e/|ulwoo/wod dno-ojwepeoe//:sdiy wolj pepeojumod



Atlas compiler system

tant for this discussion can be described with reference
to Fig. 1.

(1) The appearance of a statement on a new line
terminates the previous one.

(2) There is a simplified block structure in which the
statement begin is used to introduce a new level of
identifiers and labels, and end to revert to the old level.
In this context we speak of “textual levels”. The main
program is at level 1, its subroutines at level 2 and so
on. The main program is itself a block in which the
end is replaced by end of program.

(3) A routine has associated with it a routine spec, the
action of which will be described with reference to Fig. 1.

Just as the statement integer n declares the name n at
textual level 1 to be an integer, so routine spec sort
(arrayname A, integer n) declares the name sort (at level 1)
to be the name of a routine with 2 parameters of type
arrayname and integer respectively. (The names 4 and
n are ignored at this point.)

The routine heading initiates a new level and declares
A and n to be an array and an integer (at level 2)
respectively.

begin

integer n

routine spec sort (arrayname A, integer n)

read (n)

array x(1 : n)

read array (x)

sort (x,n)

print array (x,2,3)
routine sort (arrayname A, integer n)
integer i, j, switch

real x
cycle i = 1,1,n
switch = 0

cyclej = 1,1,n—1
if A(j) > A(+1) then - 1
x = A(j)
A(j) = AG+1)
AG+1) =x
switch = 1

1: repeat
— 2 if switch = 0
repeat

2: end

end of program

Fig. 1. An AA program to sort a sequence of numbers into
descending order

To return, one of the design criteria for Atlas Auto-
code was that the routines permanently available to all
users such as input/output routines, matrix routines and
differential equation routines (called the PERM) should
be written in AA. (They use of course the AA machine
code formats for efficiency.) The main program and all
the PERM routines are considered as being embedded
in a textual level 0 in which the routine specs for the
PERM routines have also been declared.

When a tape containing the PERM routines and specs
is presented to the compiler it is translated in the same
way as a program. This produces as well as translated
program a series of lists which are required to accom-
plish the translation not only of the PERM but also of

229

all source programs. These lists include a constant list,
a name list, a property list and a routine directory and
are spaced at wide intervals along the store. There are
also a number of pointers associated with these lists
which have to be preserved. The DEFINE COMPILER
mechanism as it stands cannot handle this situation since
it requires the compiler to occupy consecutive blocks in
the store.
It was convenient to introduce the AA statements

define compiler
define special compiler

rather than modify the Compiler Compiler master
phrases to which they closely correspond. These store
pointers within the compiler, add the translated program
and all the lists to the compiler, and then define the
whole as a compiler using precisely the same mechanism
as the Compiler Compiler master phrases.

Originally the PERM and its lists were copied on to
the end of the compiler and any previous copy deleted.
The Initial Entry Routine was modified to copy out this
material, reset the pointers and then to print out the
compiler title as before. This had the advantage that
the compiler itself was left undisturbed and so could be
used for batch processing, but the store requirements of
every program were enlarged by the two copies of the
PERM.

Subsequently the define compiler and define special
compiler statements and the Initial Entry Routine were
modified so that instead of copying information from
block A to block B, the block A itself was renamed to be
block B, taking advantage of the Atlas paging system.
This meant that with only one copy of PERM in exis-
tence at any time, the store requirements were minimized.
On the other hand it prevented batch processing.

Using these facilities PERM was added to the basic
AA compiler (again using the ‘“father and son” tech-
nique), in 3 stages.

User features

After AA had been in use for some time, there were
numerous requests for the PERM to be expanded. The
extent of the current PERM is an indication of these
requests, though many routines suggested were not of
sufficiently wide application to be included. Users may,
however, starting with the AA compiler on the Super-
visor, expand the PERM in any way they wish, to form
their own special compiler (on their own magnetic tape).
An obvious example is a special AA compiler which
contains a large general purpose magnetic tape routine
to enable a number of users to store data on the rest
of the tape with a minimum chance that one user will
overwrite that of another.

The usefulness of this facility was considerably
increased by allowing define special compiler to appear
anywhere at level 1. The effect is to add to the compiler
all the translated program preceding the define special
compiler together with an updated copy of the lists.

¥20Z Iudy 61 uo 3senb Ag 800v61/222/S/0L/811e/|ulwoo/wod dno-ojwepeoe//:sdiy wolj pepeojumod



Atlas compiler system

Ideally, it should also cause label lists and so on to be
packed on the end of the other lists at the end of the
compiler. However, by imposing two conditions on
the position of this statement:

(1) no explicit jumps across this point
(2) no cycle and repeats split across the point

then only a minor alteration to the define special compiler
routine was required. This modification caused the
labels to be filled in and cycle-repeat pairings to be
checked before performing the defining of the compiler
described above.*

A program to call this compiler consists only of that
part of the original program which came after the point
at which define special compiler was inserted. In general
this consists of a series of routine calls (followed by end
of program and data, if any). That is, it is rather like a
steering tape. This is a useful facility for debugging
programs, especially as any incorrect routine in the
compiler can be replaced by a corrected version on this
steering tape. This has proved a valuable feature since
the tapes for each run can be kept very short, a couple
of feet or so. Many programs spend all their working
life in this state.

When a program has been completely debugged and
is in production, a special compiler containing every-
thing up to end of program can be defined; programs
using this compiler contain only end of program and the
data. This is unsatisfactory for a number of reasons.
First, since this special compiler contains the AA com-
piler and all the lists required for compilation it is

* These restrictions could easily have been lifted but there has

been no call for it as control can easily be transferred across the
point by routine calls.

Reference

unnecessarily long. Secondly, it is aesthetically unsatis-
factory to have to start each program with end of pro-
gram. Consequently a statement end of compiler was
introduced. This does all the tasks, such as filling in
labels, that are associated with end of program (which it
replaces) and then defines the program as a compiler.
The compiler consists of the program plus PERM, and
the two lists necessary at run time—the constant list
and the routine directory. These are packed on the end
of the program as is a sequence (the entry point of the
compiler) to unpack these into their correct position
during running. Although some of these compilers are
compilers in the conventional sense, they are more often
just a convenient way of storing a translated program
on magnetic tape and accessing it as if it were a compiler.

A program to use this compiler consists merely of the
data of the original program.

Conclusions

We have been concerned with making provision within
our system for keeping the length of large programs as
small as possible, consistent with ease of debugging and
the efficiency of the whole system. In this light, the
facilities outlined above have proved quite valuable.
Many uses suggest themselves; for example, an AA
compiler containing a list processing package, or an
AA compiler containing grading programs, and so on.
However, we have regretted the unnecessary restrictions
which were programmed into the define compiler extra-
code requiring the compiler to occupy a contiguous set
of blocks and not to use block 0. Also the restriction
that the standard entry point of a compiler be the first
word of the first block has occasionally been inconvenient.

BROOKER, R. A., RoHL, J. S., and CLARK, S. R. (1966). The main features of Atlas Autocode, The Computer Journal, Vol. 8,

p. 303.

230

¥20Z Iudy 61 uo 3senb Ag 800v61/222/S/0L/811e/|ulwoo/wod dno-ojwepeoe//:sdiy wolj pepeojumod



