Some proposals for SNAP, a language with formal macro facilities

By R. B. E. Napper*

This paper describes some proposals to apply the full power of the Compiler Compiler to an
ALGOL-like base language, to provide an extendable language system that is one-pass and
produces efficient object code. At its simplest SNAP permits easily defined ‘‘formal macros”’
which allow conventional routine calls to be coded as open sequences tailor-made to the actual
parameters. The paper discusses the problems created by this facility, in particular to ensure
efficient code. It finishes with an illustration of the more powerful ‘‘informal macros’> which use
phrase structure notation in the routine headings and Compiler Compiler instructions in the

routine bodies.

Introduction

The name SNAP is derived from a “‘System for NAtural
Programming”. The aim of the system is to provide a
simple basic source language together with a definition
mechanism that will allow the language to be extended
indefinitely. In order to implement the system the
compiler will be written using a revised version of the
Compiler Compiler (Brooker et al., 1963).

The key to the extensions are “formal” and “‘informal”
macros, which allow extensions to be made to the
existing language easily and without loss of efficiency in
the compiled code.

A formal macro, which will be defined more precisely
later, is a conventional routine that is compiled as an
open routine tailor-made to the actual parameters. The
definition is essentially the same as that of a conventional
routine, and so formal macros can be used easily and
safely by programmers with no further knowledge or
experience beyond that required for using conventional
routines.

An informal macro is a routine containing instructions
in the language of the Compiler Compiler which are
obeyed at compile-time, as well as any source instruc-
tions that are to be compiled into the source program.
Such definitions require a minimum knowledge of
Compiler Compiler theory, e.g. such as is contained in
Napper (1965). With this minimum knowledge com-
paratively simple definitions can be written which are
simply transformations into the corresponding set of
instructions of the existing language of an instruction
with a very free format (with options or indefinite repeti-
tions of clauses, phrases, and/or parameters), using
phrase-handling instructions to break down the informal
phrases used in the format into the formal syntactic units
of the basic language. More advanced informal macros
will require more detailed knowledge of the language of
the Compiler Compiler and of the implementation of
SNAP.

Notes

(i) The most important and interesting extensions to
the language are derived from informal macros, which
though they may be non-trivial to write are easy to use.
There is not space in this paper to describe informal

macros in any detail; the description of the formal
macros covers ground which is necessary for describing
informal macros, and a fuller description of informal
macros will be given in a later paper which will describe
the implementation of SNAP in more detail.

(ii) It is more appropriate to refer to SNAP as a
“system” rather than a “language”. The basic language
could be an adaptation of an existing language, e.g.
Atlas Autocode (AA) or ALGOL, or it could be a
simple language designed independently. SNAP then
adds a Compiler Compiler capability to the basic
compiler and demands a certain internal organization
of the basic language’s implementation in order to
provide a smooth interface with the language processing
machinery.

(iii) CPL, AA, and ALGOL will be used for com-
parison purposes as ‘‘conventional” languages. As a
convenient general rule it can be assumed that facilities
not mentioned in the paper follow the pattern of one
or other of these languages.

(iv) Napper (1967) describes a system such as SNAP
as a 2nd-order language (or compiler), where an assembly
language is of order 0, and a conventional language like
ALGOL is of order 1. A language of order O has just
one basic format (a machine-code instruction), a lan-
guage of order 1 has a fixed set of formats, and a 2nd-
order language has an indefinite set of formats derived
from a fixed set comprising the basic language of the
system and a set of language-defining formats.

If ALGOL is regarded as the definitive first-order
first-generation language, then PL/1 is potentially a
second-generation language, but not necessarily a second-
order language. Its direction of progress is comple-
mentary to SNAP in that the main emphasis of PL/1 is
in providing power, flexibility, and generality to the data-
type facilities available in the language; on the other
hand SNAP aims at transforming the power of a pro-
gramming language within the range of data-type
facilities available.

Initially SNAP will not be designed to facilitate the
expansion of the data-type facilities: i.e. whereby a new
type can be introduced by adding special informal
macros to define the relevant conversions between a
new type and the existing types, and to define the action

* Dept. of Computer Science, University of Manchester, Manchester, 13.

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

of the existing operators on it; or whereby a new operator
can be introduced by defining its action on the existing
types. Using informal macros in SNAP it will be
possible to define a package of formats to manipulate
new types or use new operators, and to correlate them
with the existing facilities, but it will not be possible to
use them as operators and operands of the basic lan-
guage, except where the function facility can be adapted
for this purpose.

It is considered that operator-operand expansion and
language-format expansion are two major growth areas
beyond conventional languages that are best explored
independently at first, in order to keep the number of
new problems to be tackled within bounds.

For this reason, and because CPL, AA and ALGOL
are more simply defined, PL/1 is not being used as a
frame of reference in this paper.

(v) Although earlier work by the author, e.g. Napper
(1966), has concentrated on ‘“Natural English”, and
specifications of a revised English Mode syntax have
been drawn up (see next section), this work has been
pushed into the background while effort is concentrated
on an extension of conventional languages through
macros. It is believed that the use of English conven-
tions will become acceptable in appropriate contexts
once programmers have experienced the greater freedom
of expression SNAP will allow. The emphasis at this
time is simply on ‘“‘natural language™, i.e. on permitting
the programmer to express himself freely within a neutral
framework, without forcing him to mould his expression
into a purely mathematical or purely English framework.

Basic language of SNAP

It is hoped to provide eventually two alternative modes
for the basic language, as shown in this example taken
from a specimen program and autocode used for illus-
tration purposes in Napper (1965).

[Note that function sqdf(a,b)=(a—b)2.]

Mathematical Mode

p = sqdf(Y[2], Y[1])

qg=0
cyclee = 3,1,n

x = sqdf(Y[el], Y[e—1])
y = sqdf(Y[e—1],Y[e—2])

p=p+x
q = q + sqdf (x,y)
repeat

print (Y[n] — Y[1])/npr 5, 6
print sqrt(p)/(n—1) pr 10,6
print sqrt(q)/(n—2) pr 14,6

English Mode

Set p = the squared-difference between the YEAR of
the 2nd event and the YEAR of the 1st event, and set q to 0.

Then REPEAT for each event from the 3rd event up to
the final-event:

Set x = the squared-difference between the YEAR of
the current event and the YEAR of the previous event,

and set y = the squared-difference between the YEAR of
the previous event and the YEAR of the last-but-one event.
Then add x to p, and add the squared-difference between
x andy to q.

WHEN each event has been dealt with:

Print the YEAR of the final-event—the YEAR of the
1st event DIVIDED-BY the number-of-events ((= final-
event)) (precision : 5 places before, 6 after).

Then print the square-root of the sum-of-squared-
differences ((=p)) DIVIDED-BY 1-less than the number-
of-events (10,6), and print the square-root of the sum-of-
squared-differences-of-squared-differences ((q)) DIVIDED-
BY 2-less than the number-of-events (14,6).

In Mathematical Mode instructions are separated by
;” followed by a space (or new line), ““.”” followed by a
new line, or just a new line. Identifiers are in the form
of single letters, maybe followed by a prime. Expressions
are in the form of algebraic formulae with implicit
multiplication allowed in all cases (provided there is
no space between the two operands). Spaces are usually
optional.

The syntax of the initial basic language of SNAP has
not been decided upon yet. It may be decided to make a
direct adaptation of an existing language as the basic
language. If not, it is expected that initially a Neutral
Mode will be used. This will be based on the Mathe-
matical Mode, with a relaxation on the form of identi-
fiers to allow multi-symbol names (with a corresponding
restriction on implicit multiplication), and with words
that are parts of a routine name allowed without under-
lining provided there is a space before and after them.
Studies will be made on an ideal basic syntax in parallel
with experimental work on the implementation of
SNAP using the existing Compiler Compiler on Atlas.

For the sake of simplicity and clarity Mathematical
Mode will be used for illustration purposes in this paper.

It must be remembered in the examples given of
declarations that the language-defining mechanism of
the Compiler Compiler will allow alternatives to the
syntax to be made easily. It can be assumed for example
that parameter characteristics will have standard abbre-
viations, e.g. REN for REAL EXPRESSION NAME.
However, simply for clarity of description in this paper,
words will be used instead of abbreviations both in the
basic syntax and in the choice of routine names.

NOTE. In a program where both Mathematical
Mode and English Mode were being used, the two
modes could be mixed together freely. In particular
there would be “where” clauses to give temporary
names in one mode to variables or expressions in
another, e.g.:

Add 4 to the counter, and where c is the counter, and s
is the sum, form:

p = (Qlel+Q'[e—2])/3(a+h)
s =5 + pR[c]
General structure of a SNAP program

It is proposed to break up the formal block structure
of conventional languages with respect to routines. A

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

program will consist of a number of independent sections
prefaced by master declarations. In particular there will
bea MAIN PROGRAM and ROUTINE and FUNCTION
declarations. There will also be master declarations for
giving global information about the characteristics of
identifiers, and for giving ROUTINE FORMATS and
FUNCTION FORMATS, and one for PRESET LISTS
to give information according to various conventions
that would otherwise have to read in as data.

Routines can be given serial numbers for reference, and
information about a routine can be declared outside it
by using these serial numbers, e.g. in the global data-
type declarations, or in the local declarations of other
routines.

There are local declarations which allow a routine to
use variables declared as local to other routines, using
a different identifier in the routine if required.

A routine as a whole can be declared to be within the
scope of another routine. This will have the usual effect,
but there will be no need to group within a formal block
all the routines within the scope of a routine.

However, the system will be basically one-pass, so all
information must be declared before it is otherwise
referred to. Thus if a routine is declared to be within
the scope of another which has not been defined, this
will be queried. But if a routine uses a variable from
another routine that has not been defined, this will not
be in error if its characteristics have already been
declared or are included in the declaration; the variable
need not then be declared in its own routine. Similarly
a routine can only be called after its format has been
declared; but if a routine is defined before it is called
there is no need to give the format specification separately.

The reasons for proposing this informality of scope
derive from the author’s experience with large programs.
Natural language is at its greatest advantage in this
context, and there is more opportunity for using macros
since there is a greater possibility of the frequent repeti-
tion of small groups of instructions (or even single
instructions) which have a clear function in the context
of the job which would be obscured if they were described
in the basic language. The greater use of self-description
in instructions and the increased readability of the
program make it far easier for the programmer to
coordinate the program in his mind.

To reinforce the readability it is convenient to set out
the program so that the sections of the program are of a
uniform level of relevance and detail. In a large context
this means that it is convenient to group routines which
are at the same level together, and it is therefore incon-
venient to intersperse them with any more detailed sub-
routines which are within the scope of individual routines.
Within higher level routines, it is sometimes convenient
to use a subroutine for a small group of instructions
simply because they describe operations so detailed in
relation to the rest of the routine that they impede the
flow of the description. It is more convenient to cover
such sections with a general comment on their function
in the context of the routine. Such subroutines will

233

tend to be called only once, and if they are in a fre-
quently-used section of the program of course they will
have to be defined as macros.

The reason for allowing variables to be declared in
one routine as belonging to another is to allow a group
of routines at the same level to share the same set of
variables.

An important reason for designing a one-pass language
is that when on-line instruction-by-instruction compiling
becomes possible it will be easy to adapt the compiler
to request undeclared information, add it to its compile
time organization, and compile correctly on the spot.

Together with the use of implicit blocks with condi-
tional instructions (see below) it will be possible to
remove the concept of a block from the beginner’s
armoury. Long programs can be written without any
need for an explicit block declaration.

It will, however, still be necessary to have a full formal
block structure for routines in the case where different
sections of a program are written as independent
packages. Regarding each such unit as a “‘subprogram”,
subprograms can be included as a unit of program
description, and can be nested within each other in the
usual way; but within a subprogram a one-level program
description as described above is encouraged. The
facilities associated with subprograms will be restricted
in comparison with the analogous routine facilities; in
particular it will not be possible to define a subprogram
as a formal macro.

Use of the stack

Scalar variables and arrays will not use a stack unless
specifically requested or unless its use is implicit, e.g.
because a routine has been declared recursive or uses
dynamic storage allocation. Thus scalar variables will
in general occupy fixed global locations. Also the
addresses of dynamic arrays will be held in fixed global
locations.

Thus all variables declared local to a routine except
for those used recursively can always be accessed directly
from any other routine in the program. A further loca-
tion of global store is used to hold the current value of
the stack pointer for each routine that uses a stack.
This will be set to zero when the routine is not active,
and whenever a routine uses a stacked variable of another
routine a check will be made on entry to the routine
that the other routine is currently active.

Features derived from the Natural English system

Some of the features of the author’s original Natural
English system have proved useful enough to propose
carrying them over into standard compiler practice.

(a) Implicit Blocks. In English Mode, instructions
are separated by punctuation , ; : . and paragraph.
These instruction separators are given an order 0 to 4
respectively and are used as implicit block markers.
For example, if an “if”” or a “‘where” clause, or a cycle
instruction, is used to qualify a set of following instruc-

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

tions, the end of this local block is taken to be the next
instruction separator of order higher than that ter-
minating the qualifying instruction.

This is adapted to Mathematical/Neutral Mode by
allowing two levels of punctuation, ‘“;” with order 1
and “.” (or just a new line) with order 3. Qualifying
punctuation is restricted to ‘““:”’, and this qualifies all
instructions up to the first instruction separator of
order 3.

(b) Conditional Routines. Routines can be defined as
conditional. In this case exits from the routine are
specified by one of the two instructions condition satisfied
or condition not satisfied instead of the finish (or return)
of ordinary routines. Conditional routines replace the
“if (boolean expression) then...” of a conventional
language.

(¢) Cycle Control. There are two jump instructions
that can be used in the text covered by a cycle instruction.
Where for example i is the controlling parameter these
are finish current i and finish all i. These have the
obvious effect in relation to the controlling parameter,
and they can be used anywhere from inside any nested
cycles.

(d) Organization of Control. The organization of
control is achieved by manipulating “‘control lists” of
machine-code instructions requiring addresses to be
filled into certain points, for example the next instruction
separator of a certain order, or the points indicated by
the instructions of (b) and (c). In general addresses are
not filled in until the final destination is known. Thus
there is no jumping to an unconditional jump instruction
except maybe via an explicit label reference. This control
organization works in liaison with the routine and con-
ditional routine mechanism, and in all its forms including
macros. Regardless of the complexity of definition the
control compiled is completely efficient.

A set of consecutive conditional clauses is treated
specially. Each conditional instruction (basic or routine
call) is compiled separately, and as each new conditional
is met the control lists are updated as appropriate to the
and/or connectives and the bracketing implied by the
punctuation order (where *;” is allowed between con-
ditional instructions)—see the example given in the
definition of the function “middle-value” below. Normal
mode is resumed when the first non-conditional instruc-
tion is met.

Formats of routines and functions

The format of a routine format is an alternating string
of underlined symbols* and formal parameter speci-
fications, starting with an “underlined small word” (i.e.
a string of underlined symbols starting with two small
letters) and ending in ‘“.”” for ordinary imperatives or
“:...” for conditionals.

A formal parameter specification consists of a set of
characteristics of the formal parameter followed by the
name by which it is referred to in the body of the routine,

* Printed in bold in this paper, as are all other words and sym-
bols that would be underlined in the typewritten form of a program.

234

all enclosed in square brackets. In the simplest case,
the specification of a parameter should contain the data
type and should indicate whether the permitted syntax
of each actual parameter is that of a variable (which is
taken to imply that it is reset by the routine) or an
expression.

Thus a set of routine formats appearing as a global
declaration might be:

ROUTINE FORMATS
interchange [REAL VARIABLE v] and [REAL

VARIABLE v'].
convert [REAL EXPRESSION e] to int[INTEGER

VARIABLE i] and frac [REAL VARIABLE r].
if [[INTEGER EXPRESSION e] divisible by [INTEGER

EXPRESSION d]: . ..
if [INTEGER EXPRESSION y] leap year: . ..

In general, there is an optional space in the call
wherever there is a space in the format and on either
side of each parameter. Some symbols are allowed in
the format without being underlined, e.g. “="" and *,”.

The format of a function format is an underlined
small word, followed by alternations of underlined
symbol string and formal parameters enclosed in round
brackets. The format is preceded by a formal parameter
to specify the result parameter.

For example:

FUNCTION FORMATS
[REAL r] = middle-value ([REAL EXPRESSION a],
[REAL EXPRESSION b], [REAL EXPRESSION c))
[REAL s] = sum (for [DUMMY INDEX i] from
[INDEX EXPRESSION s] to [INDEX EXPRESSION
f1of [REAL FUNCTION f(i)))
[INTEGER i]=nearest-integer (REAL EXPRESSION e])

Routine and function definitions

A routine comprises a master declaration, the routine
heading (identical to the format specification) and then
the routine body terminated by the next master
declaration.

For example:

ROUTINE

interchange[REAL VARIABLE v] and [REAL
VARIABLE v'].
REAL ¢
t=v
v =10
v =t

ROUTINE

if [NTEGER EXPRESSION eldivisible by[INTEGER
EXPRESSION d]: ...
if e = dintpt(e/d): condition satisfied : otherwise : condition
not satisfied.

ROUTINE

if [NTEGER EXPRESSION y] leap year : ...
if y divisible by 400 : condition satisfied.

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

if y divisible by 100 : condition not satisfied.
if y divisible by 4 : condition satisfied : otherwise :
condition not satisfied.

A conditional routine is the same as an ordinary
routine definition except that instead of using finish
return must be specified by either condition satisfied or
condition not satisfied. And whereas in an ordinary
routine body if the final instruction is not an uncon-
ditional jump a final finish is implicit, in a conditional
routine the last instruction must be an unconditional
jump. Further, there must be at least one such return
in the routine for each branch.

A function definition comprises a master declaration
and the function heading as for the function format,
and then the body of the routine. The formal parameter
at the beginning of the heading is taken to declare the
name of the result. Then the conventions are exactly
the same as for an imperative routine; that is, exit is
indicated by finish, or is implicit at the end.

Thus:

FUNCTION

[REAL r] = middle-value ([REAL EXPRESSION a),

[REAL EXPRESSION b], [REAL EXPRESSION c])

iffa< b;andifa> c:orifa<c;andifa> b :r=a;

finish.

ifb<a;andifb > ciorifb< c;andifb >a:r=5=5:
otherwise : r = c.

Note in this example of the use of multiple conditional
instructions that the instructions are separated by
punctuation; and and or are not instruction delimiters
but “connectives”. The level of punctuation gives the
implicit bracketing. Within a pair of implicit brackets
the choice of the connectives between units must be
consistently and or or, but which it is is independent of
the structure outside the brackets or of that inside any
conditional groups that may be bracketed within them
at a lower level.

Using and, or and then as instruction delimiters, the
implied bracketing in the example above is as follows :

(ifa< bandifa > c)or (if a< c and if a > b))
then (r = a; return)

((ifb<aandifb > c)or (if b < c and if b > a))
then (r = b) else (r = ¢).

Note also that the individual conditional instructions
that make up the multiple conditional are quite inde-
pendent; they could have been conditional routine calls
as well as basic conditional instructions.

Formal macros

A conventional routine call associates the actual para-
meters of the call with the corresponding formal para-
meters of the routine heading. Then the effect of the
routine mechanism is as if the call had been replaced
by the instructions of the routine with each formal
parameter reference replaced by the corresponding actual

235

parameter. If the compiler carries out this substitution
itself, so that an open routine is compiled that is unique
to the actual parameters, then this is defined as a formal
macro.

However, it is usually beyond the resources of a
compiler to carry out this substitution. Further, whether
or not it can, it is frequently economically unjustified
to compile open routines in place of routine calls since
the time saved in program execution compared with a
cue-subroutine mechanism does not compensate for the
extra time and store used in compiling and the extra
store used for the compiled program.

A conventional compiler therefore compiles for each
routine definition a fixed subroutine which will be used
to process all calls on the routine. In place of each call
it compiles a cue which converts each actual parameter
of the call into a single general form that can be used
by the subroutine whenever the associated formal para-
meter is referred to. The cue also organizes the change
of control between the routine it is contained in and the
subroutine. Thus the general subroutine combines with
the particular cue that is unique to the call to simulate
the action of the corresponding formal macro.

The definition of a macro routine is the same as that
of a conventional routine. The only difference is in the
implementation implied by true substitution as opposed
to a cue-subroutine mechanism. So in SNAP the routine
definition of a formal macro is the same as for an ordinary
routine except for the master declaration. Thus:

CLOSED ROUTINE or CLOSED FUNCTION for a
conventional subroutine implementation, and OPEN
ROUTINE or OPEN FUNCTION for a formal macro.

However, there is frequently a need when using formal
macros to be discriminatory for any particular call as
to whether an open or closed form should be used. For
a particular macro it may be desirable to compile a
call open if it is in an often-used section of the program
but closed if it is not. Therefore there is the further
master declaration:

DUAL ROUTINE or DUAL FUNCTION

In this case a special formal parameter can be inserted
after the first underlined small word of the format,
either [OPEN *] or [CLOSED *]. This means that if
in a call there is an asterisk at this point the call will
be compiled OPEN or CLOSED respectively. If there
is no such parameter, [OPEN *] will be assumed.

If the subspecification OPEN, CLOSED, or DUAL
is left out of the master declaration, CLOSED is assumed ;
if the ROUTINE or FUNCTION is left out the correct
alternative is deduced from the format of the format.

Correlation of parameter calls and local declarations

Independent of whether or not it is suitable to compile
an open or closed form of a routine in place of any
particular call, there are further considerations with
respect to each of the formal parameters as to how their
calls should best be implemented. For example, if for

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

each call on a routine it is known that the actual para-
meter for a particular formal parameter will always be
an expression whose value remains constant throughout
the execution of the routine, then it is uneconomic to
recalculate the value of the expression each time the
formal parameter is used in the routine.

Accordingly conventional compilers provide alterna-
tive implementations of parameter calls to allow the
programmer to specify the most economic combination of
implementations for the formal parameters of a routine.
The classical choices, for parameters that are variables
or expressions, are as follows (using CPL terminology):

(i) Call by Value. The value of the actual parameter
is calculated in the cue and a local variable of the sub-
routine is set to this value before entry. Whenever the
formal parameter is referred to in the routine it is
treated as a reference to this local variable. If the
actual parameter is to be reset by the routine (i.e. it
has the characteristic ¥4 RIABLE), the cue also arranges,
on return from the subroutine, to copy back the final
value of the local variable to reset the actual variable.

(ii) Call by Reference. (Call-by-simple-name of AA.)
If there is a possibility that an actual parameter that is
to be reset is referred to during the execution of the
routine by using its actual name instead of its formal
name, it is better that each reference to its formal name
should deal direct with the actual parameter instead of
with a local copy as in (i); otherwise it might happen
that for certain actual parameters at certain times during
the execution of the routine the values referred to by the
actual name and the formal name could be different (i.e.
a “side-effect”). If it is known that the address of the
element to be reset remains constant throughout the
execution of the subroutine, then the cue can calculate
this address and pass it on to the subroutine. The sub-
routine keeps this address in a local location associated
with the formal parameter and whenever the formal
parameter is referred to it is treated as a reference to the
variable with this associated address. Thus the value
of the actual variable can both be referred to and reset
from the subroutine by specifying these operations on
the formal parameter.

(iii) Call by Substitution. (Call-by-name of ALGOL.)
If an actual expression can contain operands whose
values can be altered during the execution of the sub-
routine, or if an actual variable (e.g. an array element)
can have an address that can vary, then to ensure
generality there is no alternative but to recalculate the
value of the expression or variable address on each
reference to the formal parameter. In this case a
secondary subroutine is compiled as part of the cue to
carry out this calculation, and its address is passed on
to the subroutine. Then whenever the formal para-
meter is referred to control is passed back to the secondary
subroutine which will provide the required value or address.

Note that it is equally valid to use implementations
(i) or (ii) for parameters of type (iii) if it is required that
the value or address referred to by the formal parameter
should remain frozen at its entry value.

236

However, these devices and others are also applicable
within a routine or block. For example, if an expression
containing operands that can vary is often used in a
block, it may be convenient, to save both source pro-
gram and object program space, to declare, e.g. REAL
NAME e = (a—b)(@a—c)/2bc. Then whenever the para-
meter e is used in the block the value of the associated
expression is recalculated from a secondary subroutine
compiled on meeting the declaration. The effect of the
use of e is the same as if it had appeared as a formal
parameter calling an expression by substitution.

It is this generalization of the classical routine call
implementations into the field of local declarations that
accounts for the wide set of such facilities in CPL com-
pared with e.g. ALGOL. SNAP continues this
generalization further because the formal macro facilities
allow further alternative implementations. In particular
true substitution is possible; that is where call-by-sub-
stitution is implemented by open sequences instead of
by secondary subroutines.

For the reasons just stated there is a very close corre-
spondence in SNAP between the variety of local defini-
tions provided and the possible formal parameter
specifications. The implementation of the corresponding
facilities will tend to be done by the same compiler
routines. However, there are differences in format for
the user in the two cases as some of the required speci-
fication will be implicit from the context. Thus for
example [REAL EXPRESSION NAME e] corresponds to
the local declaration REAL NAME e=[EXPRESSION],
where [EXPRESSIONT] is used here in the true Compiler
Compiler sense as referring to the current symbol string
value corresponding to this compile-time phrase-variable,
i.e. to the symbol string of the actual parameter of the
call. In fact there is a set of call-declaration instruc-
tions used behind the scenes in formal macros which
can be used explicitly in informal macros (as illustrated
later). For example the appropriate call-declaration
for [REAL EXPRESSION NAME e] is CALL REAL
[EXPRESSION] e BY SUBSTITUTION.

It might be worth mentioning at this point that
in SNAP the recognition machinery automatically
“remembers” the dynamic textual level of each identifier,
and hence it knows the block to which the identifier
belongs however many levels of true substitution it may
have been passed through before its characteristics are
required for compiling code. Further, any variable of
any routine can be referred to direct from any other
routine, except that for recursive routines special action
has to be taken if there is a call-by-substitution of a
stacked variable through a level of the recursion. For
non-local variables that are stored on the stack of
another routine a test that the routine is active is made
once only, on entry to the block declaring the variable;
therefore this test need not be repeated on each reference
to the variable either in that routine or if it is passed by
substitution into other routines. Note that for example
in ALGOL a call-by-name implies temporary return to
the block containing the cue and so requires the corre-

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

sponding reorganization of the stack on entry to and
exit from the secondary subroutine.

Local declarations

When discussing formal parameters and local declara-
tions for SNAP it must be remembered that there will
be great freedom in the syntax of formats since the full
power of the Compiler Compiler is available to define
it. It will be general practice to allow information to
be left out where a strong option can be used safely.
The syntax used in the examples given below will be
essentially illustrative in the context of the discussion
rather than being a specification of the permitted syntax.

The following is a selection of the more obvious
declarations that would be useful for scalar data ele-
ments. These must occur at the beginning of a block
and must not be prefaced by labels or interspersed with
imperative instructions except by using declaration (12).
Note that declarations (6) to (11), and some forms of (5),
are versions of implementations of parameter calls for
closed routines. Declaration (2), and the true-sub-
stitution forms of (8) to (11), are versions of open routine
implementations. Note that not all the declarations
illustrated are essential to the system; some are provided

"because they are by-products of the parameter call
machinery that are easily understood and sometimes
useful.

(1) <TYPE) a, b. Defines the name and type of a
new local variable.

(2) VARIABLE NAME i=j, k' =k (R50). This
declares a new name for an existing scalar variable.
The scope within which the existing variable is
defined is that of the associated routine, or if none
given, the current routine.

(3) NONLOCAL VARIABLE n’ (R8). Declares that
for this block the given identifier refers to the local
variable with the same name from the given routine.
This is just a special case of (2).

(4) VARIABLE a TYPE AS FOR q (R28). Defines a
local variable with type the same as another; the
latter must be currently declared. This is more
commonly used without a routine given, i.e. where
the parent variable given is a formal parameter
name that refers dynamically (at compile time) to
an actual variable from another routine or block.

(5) PRESET (TYPE?> VARIABLE a=b, x=b(b-¢)|2.
Declares the name of a local variable, and its type
either explicitly or implicitly from the type of the
expression. It then initializes the variable to the
dynamic value of the expression.

(6) CTYPE?) CONSTANT a=b, x=bb + c)/2.
Has the same effect as (5) except that the variable
cannot be subsequently reset.

(7) ARRAY ELEMENT REFERENCE a=P[i-+j+k],
r = Qli,jl. Here the address is calculated on
initialization; all subsequent references to e.g. a
and r will be direct to the scalar element so defined.

237

(8) ARRAY ELEMENT NAME a = P[i +j + k],
r = Ql[i,j]. Any subsequent reference to a and r
will be replaced by a cue to a secondary subroutine
to calculate the address of the element.

ARRAY ELEMENT NAME'. As above but true
substitution is used.

(9) <TYPE?> EXPRESSION NAME x=d4sqrt(a-+b).
Here any subsequent reference to x will be treated
as a call-by-substitution for the expression using a
secondary subroutine. It cannot be used as a
variable, and is in fact a local parameterless
function.

(TYPE?> EXPRESSION NAME' x=4sqrt(a+b).
As above but true substitution is used.

(10) <TYPE) FUNCTION NAME f([KTYPE/1) x],
[KTYPE/2) i]) = 2P[i]l(x + 1)/(a + b). The func-
tion name must be a single underlined small letter
(cf. the function routine name which is an under-
lined small word).

This sets up a local definition equivalent to:
[KTYPE) r]=f([{TYPE/1) EXPRESSION x],
[KTYPE/2) EXPRESSION])

r=2P[i](x+1)/(a+b).

There can be any number of formal parameters.
A subroutine is compiled to calculate the value and
it is called whenever the function is used.

({TYPE) FUNCTION NAME’' etc. . . . is the same
except that true substitution is used.
(11) <TYPE) FUNCTION VALUE etc. . . . is similar

to (10) but here the values of all operands other
than those containing the formal parameters are
frozen at their value on initialization.

(12) OBEY a = sqrt(2n); if i = 0: a = 2a. Here a line
of imperative (and conditional) instructions can be
written, but it must not contain a label or a label
reference.

The instructions of (12) and the dynamic elements of
other local declarations are obeyed serially on entry to
the block and can only be obeyed on entry (i.e. the
dynamic elements of declarations can only be obeyed
once per entry into the block). If such dynamic instruc-
tions call other (closed) program routines this will be
queried to remind the programmer to check that he
does not refer to any stacked information not yet
declared in the block.

Formal parameter specifications

It will have been noted that VARIABLE and
EXPRESSION have been used in the specifications of
formal parameters. As well as specifying the permitted
syntax of the actual parameter this is also taken to
specify whether or not the formal parameter (i.e. each
actual parameter) is reset by the routine. Any further
information as to the implementation of the parameter
call is given in a separate specification, e.g. VALUE,
REFERENCE, or NAME (i.e. substitution) or a serial
number, e.g. C18. If this specification is not given,
VALUE is assumed.

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

The specifications of formal parameters for CLOSED
routines and functions include the following possibilities:

(13) KTYPE) VARIABLE NAME v]. Call-by-sub-
stitution on the variable.

(14) [(TYPE) VARIABLE REFERENCE v].
reference on the variable.

(15) [KTYPE) VARIABLE VALUE v]. Call-by-value
on the variable, actual parameter reset to the final
value of the local variable on exit.

(16) [KTYPE) VARIABLE RESULT w]. Variable
declared local but not preset; actual parameter set
to final value of local variable on exit.

Call-by-

(17) [KTYPE) EXPRESSION VALUE e]. Call-by-
value on the expression.
(18) [KTYPE) EXPRESSION NAME e]. Call-by-sub-

stitution on the expression.

(19) [DUMMY (TYPE?)i]. This can be used in con-
nection with (20). It must be matched in the call
by a scalar identifier. If a ¢{TYPE) is given, the
declaration has the dual effect of declaring a formal
parameter [DUMMY i] and a local variable
(TYPE) i.

(20) KTYPEY) FUNCTION NAME (f{(TYPE?))]
There can be any number of parameters (separated
by commas). Each formal parameter of the
function must have been declared as a previous
formal parameter of the routine heading. If the
previous declaration contains a (TYPE) there is no
need to respecify it.

For each particular call on the routine a local function
is set up in the cue; this function corresponds to the
actual expression matching the parameter, with those
scalar identifiers which match the actual parameters of
the appropriate previous formal parameters treated as
the formal parameters of the function. If a previous
formal parameter is not a dummy a check is made that
the actual parameter is a scalar, but there is not neces-
sarily any connection between it and the formal para-
meter of the local function. For example:

FUNCTION

[REAL s') = sum (for[DUMMY INDEX ilfrom[INDEX
EXPRESSION s] to [INDEX EXPRESSION f]
of [REAL FUNCTION NAME g(i)])
s'=0
cyclei=s,1,f
s =5+ g(i)

repeat

The function could be called, for example, by:
P[k] = sum (for j from 1 to n of Q[j, k]/(sqdf(j, k) + 1))

and the local function created by the cue is in effect:
[REAL r] = g(INDEX EXPRESSION j))

r = Qlj, k]/(sqdf(j, k) + 1)

Note that since j matches a DUMMY formal para-

meter, if it happened that j had been declared as a local
variable of the routine containing the call there would

238

be no connection at all between this variable and the j
of the call.
Closely related to formal parameter (20) is:

(21) [(TYPE) FUNCTION VALUE f(<TYPE?) i)].
In this case the local function compiled by the cue
is such that all operands other than those con-
taining the formal parameters are frozen at their
value on initialization.

Variations for formal parameters of open routines

If a routine is declared as OPEN or DUAL all the
above specifications are equally valid. However, for
open routines there are further variations on the set,
and in the case of dual routines standard assumptions
are made for the corresponding open versions of the
closed variations, or specific alternatives can be given
explicitly.

The variations possible when open routines are being
used can be classified under three general headings:

(a) True substitution. Where call-by-substitution is
specified, call-by-true-substitution can be specified
instead. Note that in particular a FUNCTION call can
be specified as a true substitution; so in the above
example, if the function sum is defined as open and the
FUNCTION NAME call specified as a true substitution,
for the given call g(i) would be replaced by

Qli, k]/(sqdf(i, k) + 1).

(b) Free type. The type of the formal parameter can
be left out, so that the definition is valid for all types.

For example:

OPEN ROUTINE

interchange [VARIABLE v] and [VARIABLE v'].
VARIABLE t TYPE AS FOR v

t=v
=1
v =t

This routine therefore defines the interchange opera-
tion for all types and combinations of data. If the types
are incompatible this will emerge in the usual way when
the open routine is being compiled.

(c) Open-option. Where an expression or a variable
is not being called by substitution, a variation can be
specified so that if a particular actual parameter is such
that its value can be accessed or reset as easily as the
corresponding local variable, then the call will be
implemented by true substitution instead.

For example if in the interchange routine an actual
parameter is a scalar it will be uneconomic to call it by
value. This entails copying the value of the scalar into
a local location before entering the routine and copying
it back at the end. It would be better to call the scalar
by true substitution and avoid the two copies.

Thus where the required variant is parameter call
number C41, say:

OPEN ROUTINE

interchange [VARIABLE C41 v]and [VARIABLE C41v'].
VARIABLE : TYPE AS FOR v

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

t=v
v="10
v =t

This routine now not only defines the interchange
operation for all types and combinations of data, but
for the standard data-types automatically implements
the parameter calls in the most efficient manner.

Further options that might be convenient for a
compiler to implement are to choose automatically
between implementing call-by-substitution by sub-
routine or by open sequences depending on the actual
parameter. And in the case of functions an option could
be provided to allow the compiler to substitute an
appropriate output parameter for the result variable, in
particular a program variable if the function is called
simply to set a variable, e.g. as in the example of a call
given in (20).

Restriction of variations

It might appear that the choice of alternatives and the
variety of syntax possible in routine headings is un-
manageable. These problems are inevitable in all
aspects of programming as the power of available
facilities and alternative language increases. The
beginner must be provided with a simple subset of
facilities and language to learn, and he can feel himself
outwards in those directions dictated by his needs. In
those cases where there is a strong common option
amongst facilities the variant can be left out of the
syntax.

In particular, for the formal macro facilities, a very
small subset of alternative formal parameter specifica-
tions will provide a workable subset of facilities. There
is no need for the programmer to be aware of the others
until he needs to be aware of the practical considerations
that necessitate them; then of course the categorizing of
the alternatives will help to clarify the considerations.

In the case of the experienced programmer, it is
expected that he will also tend to write his programs
using the basic subset, and will use closed routines
everywhere except where it is obvious that he will be
needing open or dual routines. Then only when he
reaches the point where his program is near the pro-
duction stage need he alter the format specifications and
bring forward any routines that should be open or dual
to the front of the program. The alterations to the
program need only be the addition of serial numbers to
specify the precise implementation required for a formal
parameter, and the addition of asterisks throughout the
program where necessary if duals are being used. The
addition of these symbols will not alter the description
of the program, or interfere with its execution (except
perhaps where side-effects need to be considered). The
detail of how to achieve the optimum implementation
can be largely isolated from the problem itself.

Particularly where the detail of the formal parameter
implementation can be specified by adding a serial
number to the small subset of common formal para-
meters, it should be possible for the additions to be

239

made only to the format specifications, which will tend
to be grouped together at the beginning of the program.
The subsequent routine heading will then only be
checked for consistency (not identity) against the format
specification.

It is hoped that, contrary to what might be expected,
the introduction of a powerful language and compiler
will tend to cause an increase in the efficiency of the
compiled program. This is achieved by the precision
of parameter specification, the efficiency of the control
mechanism, the avoidance of the stack, the use of open
routines and duals defined specially for particular pro-
grams, and the use of library informal macros to deal
with special situations maybe by direct use of machine
code.

Implementation of macros

Textual Levels. 1t has been stated that SNAP is a
one-pass language, i.e. all information must be declared
before it is otherwise referred to. It is equally true that
the implementation of the formal macros is one-pass.
The source program string is read and dealt with in the
usual way, except that when open or dual routines
are encountered the compiler switches from *“compiler
mode” to ‘“Compiler Compiler mode” (see Napper, 1965
and 1967) and the routines are stored as an extension
of the compiler, i.e. as compile-time routines.

The only action taken when reading a macro is
similar to that taken on reading an ordinary routine
heading: check if the format has been declared; if so
check the routine heading for consistency, and other-
wise, open a file for this new routine. No further action
is taken with respect to compiler mode activity except
perhaps to note information given in the local declara-
tions. If the next master declaration is another macro
(or a set of macro formats) the system remains in Com-
piler Compiler mode, but otherwise it returns to compiler
mode and deals with the source string that follows in
the usual way. The program source string with the
macros removed will be referred to as the static text.
It is this text that the compiler processes in compiler
mode.

A macro is not obeyed in compiler mode until an
occurrence of a call for it in the static text, or until it is
activated by such a call from a macro which in turn
calls it. Thus any variables it may use from another
routine need only have been declared before the first
call on a macro (or the first call on a macro calling it);
they do not have to be declared before the macro occurs
in the original program text. The macro will be cbeyed
in compiler mode every time it is called. However, the
first call is distinctive in that it will give any compile-map
information that it was not possible to give when the
routine heading was read. In the case of the first occur-
rence of the closed form of a dual routine a cue and
subroutine will be compiled, but subsequently only a cue
will be compiled.

As has been stated before, all true substitution is
dynamic; there is no preprocessing of source program

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

symbol string and then compiling from the processed
string. Where the static text calls macros, or where
such macros call further macros there will be more than
one dynamic level of routines current in the compile-
time stack. So a standard Compiler Compiler mechan-
ism is used to keep a record of the dynamic textual level
of each identifier in its analysis record. Note that this
dynamic textual level stack is not the same as the
organizational compile time stack of a conventional
compiler. This static textual level stack bas one level
for each nesting of blocks (and routines) current in the
program text. The property of any identifier is found by
working through this stack from bottom to top until the
name is found.

However, with formal macros operating there is a
2-dimensional stack: one dimension gives the set of
macros currently active back up to the level of static
text, and the other gives any nesting of blocks current
in each macro and the static text. When the charac-
teristics of an identifier are required the compiler first
finds the dynamic textual level of the identifier. In the
case of a macro it then proceeds to search the property
lists of any blocks created by this call on the macro, and
for the static text it searches the lists of any blocks
current within the routine or the top level program.
Then in either case it searches the property list of the
macro or routine, then any routine it is within the
scope of, and so on back to the list of global information.

NOTE. There is a special case for certain macros
where it is desirable to allow the sequence of levels
searched to pass from the dynamic level of the routine
on to the dynamic level of the block calling it, and from
then up as described above. This is required for
“correction” macros which can be inserted at the
beginning of the program, and for other small non-
parametric once-called macros, e.g. where a routine
has only been defined to make the description neater.
In these cases it may not be powerful enough to define
the macro within the scope of the calling routine since
some of the identifiers it uses may only be defined within
a local block (e.g. covered by a “where” clause). And
it may be inconvenient, or in the case of corrections
impossible, to include all such identifiers as parameters
of the routine call. This case will be covered by a
CORRECTION facility, although a special form with a
different master declaration will cover the case where
the macro is part of the intended program description.

NOTE. It might be thought that the 2-dimensional
stack is largely an academic concept; open routines will
generally be too short to require any significant block
structure. However, there are two classes of macro
where this is not the case. First is the case of large
routines that are called once only, where it may be
desirable for various reasons te change them from closed
routines to open routines when the final compilation of
a production program is made. Second is the case of
informal macros which compile into large open routines.
These derive from instructions with complicated formats,
with many options of syntax and parameters, including

240

indefinite lists of parameters or clauses, for example
the ‘“reorder” instruction illustrated in Napper (1966
and 1967), which has been used to compile tailor made
open routines with length ranging from 25 to 75 basic
instructions of the language. Note that even if it was
possible to simulate the action of such a macro with a
closed routine it would be uneconomic as it would
have to be executed interpretively.

Dynamic Substitution. Tt should be observed that a
two-pass macro-generation of a program—i.e. one that,
given a set of macros and a source program string
including macro calls, generates a secondary string and
then compiles this secondary string—loses the infor-
mation as to which dynamic textual level substituted
identifiers belong.

For example, consider the macros:

OPEN ROUTINE
convert [REAL VARIABLE NAME' a]
INDEX i

i = intpt(a/2)

add (a+C[i+1])/2

a = C[i]

OPEN ROUTINE

add [REAL EXPRESSION NAME' a]
INDEX i
i = intpt(4(a+c)/c)
Sli1= S+ 1
If these had been called for example by the instruction:
convert Y’[i], then the dynamic substitution (enclosing
each macro call in a block) is:

BEGIN ((formal parameter a = actual Y'[i]))
INDEX i
i = intpt(Y'[i]/2)
BEGIN ((now a = (Y'[i]4+C[i+1])/2))
INDEX i
i = intpt(4((Y'[i]+Cli+11)/2 + c)/c)
Sli] = S[i1+1
END
Y'[i] = C[i]
END

Here i in the 6th line should really be referring in turn
to the local variable i of three different routines, but it
will be interpreted as the local i of routine “add...” in
each case.

This problem can be overcome by injecting declara-
tions at the beginning of the block enclosing the macro
to associate the formal parameters with names one level
up; then the formal names only are used in the textual
level of the routine.

The above sequence now becomes:

BEGIN
REAL NAME' a = Y'[i]
INDEX i
i = intpt(a/2)
BEGIN
REAL NAME' a = (a+Cli+1])/2

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

INDEX i
i = intpt(4(a+c)/c)
Sl = Sli]+ 1

END
a = C[i]
END

However, the simple substitution model is now lost
and the compiler will have to contain quite sophisticated
string-handling and analysis machinery to recreate the
true substitution. In other words it is doubtful whether
formal macros can be implemented conveniently except
by using a first-order language to write the basic com-
piler in; a 2-pass system comprising a macro-generator
and an assembly language compiler would seem to be
inadequate.

In fact, although it is a one-pass system, SNAP imple-
ments formal macros in a similar way. Anyone familiar
with the Compiler Compiler will have noticed that open
routines do not contain phrase-identifiers, the special
“phrase-variables” that implement dynamic substitution;
it might be expected that they would be used in place of
the formal parameter names. Similarly, the routine
(and routine format) declarations of SNAP do not
satisfy the basic formats of the language-defining lan-
guage; in particular the routine heading should contain
the names of the formal phrase-variable parameters.
In fact these declarations are read in compiler mode,
any required information is extracted from them (as for
closed routines), and then they are converted into format
routine declarations of the Compiler Compiler language.
In addition the appropriate call-declarations are inserted
after the routine heading to implement the parameter
calls, e.g. CALL REAL [VARIABLE] a BY TRUE
SUBSTITUTION, and CALL REAL [EXPRESSION] a
BY TRUE SUBSTITUTION.

Usually the effect of these declarations is to make a
call by value, reference, or ordinary substitution, in
which case the characteristics of the formal name will
be recorded as those of the local object set up by the
call. Where an open-option call-declaration makes a
choice between one of these calls and true substitution,
it is only likely to choose true substitution if the para-
meter is a simple object, in which case it can store its
characteristics as the characteristics associated with the
formal name. It is only in the less common cases where
true substitution is specified (e.g. because the formal
name is only referred to once in the routine) that it will
be necessary to associate with the formal name (just)
the analysis record of the phrase-variable (i.e. of the
actual parameter). Inside such an analysis record, the
record of each identifier will contain a reference to the
dynamic textual level.

Thus it would be less efficient always to use a phrase-
variable instead of a formal name to implement formal
parameter calls in open routines. Where dynamic sub-
stitution is required it is little extra trouble (in the context
of the standard Compiler Compiler machinery for
analysing variables and expressions) to return to pro-
cessing an analysis tree at any point where on inspection

SNAP

241

an identifier (apparently a “fruit” of the tree) turns out
to refer to a further subtree. However, in informal
macros phrase-identifiers can be used instead of formal
parameter names if this is more convenient or efficient.

Informal macros

There is not space to give a detailed account of the
uses of informal macros and their implementation.
However, the following example of a simple informal
macro for a ‘“‘choose random” instruction should give
some indication.

In English Mode a call on such a routine might be,
for example:

choose random direction left (with weight p"), right (q'), for-
wards (2(10—p’—q")/3), or backwards (10—p’—q")/3).
Consider the form in Mathematical Mode:
choose random d = [/ wt p’, r wt q’, f wt 2(10—p’'—q")/3,
b wt (10—p'—¢q')/3.
The object of the instruction is to set a variable, e.g. d,
to one of an indefinite set of expressions, e.g. 4 : I, r, f, b,
at random in proportion to the corresponding weights,
e.g. ', q', 2(10—p’—q)/3, and (10—p'—¢")/3.
The format of the instruction, in Compiler Compiler
notation, is:

choose random [VARIABLE] = [EXPRESSION]wt
[EXPRESSION] [MORE-CHOICES?]
Where PHRASE [MORE-CHOICES?] = [,]
[EXPRESSION] wt [EXPRESSION]
[MORE-CHOICES?], NIL

And the corresponding routine is:

INFORMAL ROUTINE

choose random [VARIABLE] = [EXPRESSION/1]wt

[EXPRESSION/2][MORE-CHOICES?].

CALL [VARIABLE] ¢ BY RESULT/TRUE

SUBSTITUTION
CALL [EXPRESSION/2] BY VALUE|TRUE
SUBSTITUTION

IN OPTIONAL LIST [MORE-CHOICES?]:

FOR 2ND [EXPRESSION] IN EACH ITEM, CALL
[EXPRESSION] BY VALUE|/TRUE SUBSTITU-
TION

REAL x

LET [MORE-CHOICES ?/1] = [MORE-CHOICES?]

LET [EXPRESSION] = [EXPRESSION;/2]

1) — 2 UNLESS [MORE-CHOICES?/1] = [,]
[EXPRESSION/3]wt [EXPRESSION/4]
[MORE-CHOICES /1]

LET [EXPRESSION] = ([EXPRESSION])

+ ([EXPRESSION/4]); —1

2) set random x between 0 and [EXPRESSION].

3) >4 IF NO [MORE-CHOICES??]

x = x — [EXPRESSION/2]

if x <0 : ¢ = [EXPRESSION/1]; finish.

LET [MORE-CHOICES?] = [,]
[EXPRESSION/1]wt[EXPRESSION/2]
[MORE-CHOICES?]; —3

4) ¢ = [EXPRESSION/1]

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

Note that the routine heading contains no formal
parameter specifications of SNAP, but only the true
phrase-variables of the Compiler Compiler. The first
job of the body of the routine is to comb the informal
phrase structure of the format and carry out all the call-
declarations required by the phrases corresponding to
the formal SNAP parameters, e.g. [VARIABLE] and
[EXPRESSION].

Thus CALL [VARIABLE] ¢ BY RESULT|/TRUE
SUBSTITUTION is the call-declaration of formal para-
meter [VARIABLE C42c], where C42 is the open-
option version of parameter specification no. 16 (cf. C41
which is the open-option version of no. 15). In fact
[VARIABLE C42c] could have been written in the
routine heading instead of [VARIABLE], and the
standard routine-heading processing machinery would
have changed it into [VARIABLE] and then inserted
the call-declaration at the beginning of the routine
automatically.

CALL [EXPRESSION/2] BY VALUE|TRUE SUB-
STITUTION is the call-declaration of the open-option
version of parameter specification no. 17. Note here
that no formal name is given. This is because the first
weight is subsequently treated in the same way as the
rest of the list of weights and it is not convenient or
necessary to give them all explicit formal names. If
the option is taken which sets up a local object (i.e. call-
by-value), an “‘artificial name” is set up behind the
scenes to refer to this new object and the phrase-variable
is reset to it. Then in either case all references to the
parameter are made using the phrase-variable, i.e. by
dynamic substitution.

The third instruction of the routine is a special cycle
control construction provided by SNAP (for technical
reasons) to process the list of choices carrying out the
appropriate calls. Note that the first expression in each
item, i.e. the choice, can be left as a dynamic substitution
since it is only referred to once in the open routine
generated by the macro (this is also true of the last
weight).

The declarations are completed by REAL x. Then
follows a sequence in basic Compiler Compiler phrase-
handling instructions which runs through the list of
choices explicitly and forms an expression which
represents the sum of the given weights. Finally, starting
at Compiler Compiler label 2, comes the actual genera-
tion of the imperative instructions of the open routine.
Note that “‘set random” is assumed to be already defined
as part of the existing (nonbasic) language.

The effect of this informal macro for the given call is
therefore to generate the following open routine. Note
that call-declarations that have had no effect have been
omitted, and for those that have, the effect is shown by
the equivalent local declaration used by the option
exercised. The “artificial names” are shown as el and e2.

BEGIN
VARIABLE NAME ¢ = d
CONSTANT el = 2(10—p'—q')/3

242

CONSTANT €2 = (10—p'—q')/3

REAL x
set random x between 0 and (((p")+(q))+(el))+(e2).
x=x—p
if x <0 : ¢ = [; finish.
x=x—¢q
if x <0 : ¢ = r; finish.
x=x—el
if x <0 : ¢ =f; finish.
c=1b
END

Thus the informal macro compiles an open sequence
that is close to the optimum coding for all possible
combinations of actual parameters. If the programmer
was forced to write the sequence out himself the com-
piled code would tend to be less efficient as he would
not bother to give thought to the optimum coding, e.g.
to use local variables where necessary for efficiency.
Conversely, if a closed routine was available to carry
out this operation, any parameters that did not have to
be set to local values would have to be copied unneces-
sarily, and the cue required for the subroutine would
not be significantly shorter than the actual open sequence.

To illustrate this latter point, consider the following
comparison between an open version of this instruction
and an equivalent closed version. Also consider the
comparison with an informal macro that has been
written in a more careful way, using simple ‘“‘micro-
programming” to allow the accumulator to be referred
to as an operand (e.g. d = r becomes A = r; d = A).
Assume that a closed subroutine exists that allows up
to 5 choices (zeros being used for choices and weights
not required)—note of course that this restricts the
data types of the variable being set and of the possible
choices. Assume that the subroutine has been written
using the same simple micro-programming but using a
closed sequence for the instruction ‘“‘set random” instead
of the open sequence used for the informal macro.
Assume that the routine changing sequence required in
the cue is 3 machine instructions in addition to the
parameter calls (which require 10 copies on entry and
one on return). Assume that the random generation
sequence is 5 instructions.

Then if all the actual parameters are simple (i.e.
accessible in one instruction), and there are 4 choices,
assuming a one-address code and one accumulator we
get the following figures:

AV. M/C
INSTRUCTIONS OBEYED

M/C
INSTRUCTIONS COMPILED

Open with micro-

programming: 25 20
Open without micro-
programming: 36 25

Cue for closed routine: 25 (in all, about) 60

Note that in a more sophisticated version of the
informal macro it could be arranged that the weights

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

SNAP

could be optional; if any were missing, wt 1 would be
assumed. Further refinements that could be included
are to add together any preset weights at compile time
instead of at execution time, or to check if all the weights
were left out, in which case a multiway switch could be
used, or to check if there were only two equal choices,
in which case a simpler yes/no output from the random
generator could be used.

This example should give some idea of the potential
power of informal macros. With the freedom given by
the use of phrase structure notation it should be possible
to allow the source programmer to describe larger
sections of program in a single instruction. This is of
advantage to him since it means that he can write at a
higher level of description and therefore in a language
closer to the program-independent formulation of his
job. At the same time the expert compiler-writer can
acquire a larger block of source program within which
he can exercise his experience to optimize the object
code efficiency. In doing so he should more than offset
the losses inherent in more generalized instructions; and
in the case where there is more than one way of carrying
out the operation, options can be introduced into the

References

instruction format to allow the programmer to give
further information if he wants to indicate the most
suitable method.)

A further large area of informal macro usage is to
define instructions (with simple syntax) to carry out
operations not provided by the basic language, e.g. to
deal with new data-types. A library of macros can be
built up, as pure/relocatable routines of the basic com-
piler, and when a program is being translated the quick
access store need only contain the basic compiler and
those macros actually required by the programmer.
This means that features that might otherwise be per-
manent features of a language can be left as options in
the library. Note that in the case of a simple informal
macro like “‘choose random”, unoptimized versions of
a compiler routine can be written without expert know-
ledge, to be used until the need for a more expert version
is established.

Acknowledgements

I should like to thank Mr. R. A. Brooker for his
continuing advice, and the Science Research Council
for supporting my work for the previous two years.

BROOKER, R. A,, et al. (1963). The Compiler Compiler, Annual Review in Automatic Programming, Vol.3, (Ed. Goodman)

Oxford: Pergamon Press.

BARRON, D. W. et al. (1963). The main features of CPL, The Computer Journal, Vol. 6, p. 134.
NAPPER, R. B. E. (1965). An Introduction to the Compiler Compiler, Technical report, Dept. of Computer Science, Manchester

University.

NAPPER, R. B. E. (1966). A System for Defining Language and Writing Programs in “Natural English”, Formal Language
Description Languages for Computer Programming (Ed. Steel), Amsterdam: North Holland.

NAPPER, R. B. E. (1967). The Third-Order Compiler: a Context for Free Man Machine Communication, Machine Intelligence 1

(Ed. D. Michie), Edinburgh: Oliver & Boyd.

BROOKER, R. A. et al. (1966). The main features of Atlas Autocode, The Computer Journal, Vol. 8, p. 303.

243

¥20Z Iudy 61 U0 3senb Aq 1L 0v6Y/LE2/E/0L/81IE/|UlWoo/wo0 dno-ojwepeoe//:sdiy wolj pepeojumod

