Algebraic inference of pattern similarity

By J. R. Ullmann*

It is common in automatic pattern recognition to recognize an unknown pattern as the same as
the known pattern to which it is most similar. This paper explores the idea that if appropriate
pairs of parts are chosen, then the similarity of a pair of patterns is the sum of the similarities of
these pairs of parts. In a simplified recognition problem, it is found that appropriate pairs of
parts are chosen automatically when a purely algebraic technique is used for inferring the simi-
larities of unknown to known patterns. This is a critical step in a research programme aimed at
automatically finding suitable systems of features for recognizing hand-printed and cursively

written characters.

1. Introduction

Greanias, Meagher, Norman and Essinger (1963) have
claimed 929 successful recognition of unconstrained
hand printed numerals, in terms of intuitively chosen
features such as “west bay, bottom left” (in recognizing
“3” and “5”) and “horizontal line end, top left” (in
recognizing 2, 3, 7), etc. “West bay, bottom left” is
not a single perfectly defined geometrical shape, and
instead can be thought of as a collection of alternative
exactly defined but slightly different shapes which count
as “west bay, bottom left” and which we call variants
of this feature. A “five” is not a single perfectly defined
shape, but a class of fairly similar shapes which we call
variants of this character.

Characters may be recognized in terms of properties
more abstract than geometrical features. For example,
Giuliano, Jones, Kimball, Meyer and Stein (1961) and
Alt (1962) have obtained the higher moments of patterns,
blackness being analogous to mass; and Horwitz and
Shelton (1961) and Clowes and Parks (1961) have used
autocorrelation as a first stage of automatic recognition.
Generally speaking, the output of the first (preprocessor)
stage is a set of numerical values. It is often found
expedient to multiply these values by weights in the
decision process, and several methods for determining
suitable weights are now well known. Statistical weight-
ing was proposed by Selfridge (1955) and implemented
for example by Doyle (1960) on results of fairly compli-
cated geometrical tests. Following Roberts (1960),
Duda and Fossum (1966) have experimented with a
perceptron-type systematic trial and error method for
finding weights, and also for finding more than one set
of weights per character.

An underlying presupposition in contemporary work
is the compactness hypothesis. According to this it is
indeed possible to find (preprocessor) tests which give
numerical results when applied to raw patterns, and
which have the following property. When the numerical
results of these tests are used as the co-ordinates of a
point in a hyperspace with a suitably chosen metric, the
points corresponding to variants of the same character
lie in a number of compact clusters, which are not
entangled with the clusters representative of variants of

other characters. Machines designed on this hypothesis
have been fairly successful in recognizing multifont print
when examples of the characters in all the fonts to be
recognized have been available to the machine during a
conditioning phase, or available in advance to the
machine designer. A salient example of this success is
the simulation by Liu (1964) in which characters were
recognized in terms of n-tuples automatically chosen by
a computer.

The problem of recognizing hand-printed characters
is analogous to the problem of recognizing remarkably
clearly machine-printed characters from an unlimited
number of different fonts, of which only a few are known
in advance. The compactness hypothesis has been far
less successful when few, rather than all, of the fonts
to be recognized have been known in advance. For
recognizing hand-printed addresses on postal envelopes,
for example, experimental results have not been satis-
factory; and a method for automatically choosing suit-
able features or more abstract tests remains to be devised.
Furthermore, the a priori chances of the compactness
hypothesis being a practical basis for hand-written-
character recognition are infinitesimal.

The present work is a preliminary investigation of a
purely algebraic recognition process in which a raw
pattern is not transformed into a set of numerical test
results, but instead into a set of algebraic unknowns.
In this process, suitable parts (feature variants) of
patterns are found automatically. The main reason
for this investigation is that the algebraic method offers
scope for replacing the compactness hypothesis by a
less restrictive hypothesis on which basis the recognition
of unconstrained hand-printed and even cursive
characters may eventually become practical. The com-
putational problems involved are so formidable that the
present paper is restricted to a simplified recognition
problem related to practical character recognition as
explained in Section 3.

2. The problem

For clarity the problem is formulated in terms of a
machine M which operates on data generated by a
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machine G. G generates N-bit binary patterns on an
ordered set, U, of N locations, in each of which 1 or 0
may be written. A sub-pattern is a pattern on a subset
of U.

For use in the generation of patterns on U, certain
constants are arbitrarily chosen by G but not revealed
to M. These constants are a set

2 ={01,03...04...0,}

of positive integers, and a partition 7 which partitions
U into the subsets

UG = {UIG, UZG, .« e UiG’ “ e UmG}

such that, for i=1,2,...m, if A; is the number of
elements in U, g, then

2% > g,
For each subset U,q, fori =1,2,...m, a set
Vie = {ViGl, ViGZ, e ViGj’ cee ViGci}

of o; different alternative sub-patterns on U; are ran-
domly chosen. A different numerical value is assigned
by G to each of these different sub-patterns, and this
value is restricted to be a non-negative integer less than
some arbitrary limit (but is otherwise randomly chosen).
From these chosen sub-patterns all possible patterns
VmGj(m)}

Vo= {Vl Gj(1)» V26j(2)5 s ViGj(i)a e

are assembled in turn, where all j(i) are such that for
i=12,...m,

V:'Gj(i)E Vig.
Altogether there are
llI:O'lX(sz..-XO'm

such patterns, which are actually arranged by G in
random sequence

Vio Var oo e Vi Vs .. Vs

For all « from 1 to ¢, V, has a value which is the sum
of the assigned values of its constituent sub-patterns,
and G assigns V, to one of the classes Q or R according
as the value assigned to ¥V, does or does not exceed some
arbitrary limit L,.

This paper is concerned with a problem itself derived
from the following simple recognition problem. Machine
M is given as data the u patterns Vy, V,, ...V, from
the set Vy, V,,...V,,...V,, each labelled according
to its membership of R or Q; and is also given that the
value associated with any member of Q is greater than
the value associated with any member of R. M is then
given an unlabelled pattern V, from the set ¥, y, ... Vy,
and is required to label it in agreement with G. It is
important that M is not given X, =g nor the actual
values associated with the patterns or sub-patterns, and
therefore this problem differs fundamentally from that
treated for example by Ho and Kashyap (1965).
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In the present problem M is implicitly given a number
of inequalities of the form

(value for member of Q) > (value for member of R)

and we call these the data inequalities. 1f it could be
deduced from the data inequalities that for every given
member of R

(value for V) > (value for given member of R),

then it would be at least fairly sensible to label V, as
belonging to Q. A computational process for assigning
truth values to inequalities such as

(value for V,) > (value for given member of R)

could be tried out and tested on known inequalities such
as

(value for member of Q) > (value for member of R).

Therefore the present paper is concerned with the
following problem:

Machine M is given as data the p patterns Vy, V,,... V,,
from the set V. V,, ...V, ...V, each labelled
according to its membership of Q or R, and M is again
also given that the value associated with any member
of Q is greater than that associated with any member of
R. M is then given patterns ¥, and ¥V, both belonging
to Vyiy,...Vy, such that VyeQ and VieR. M is
required to perform a computation which assigns the
truth value “true” to

(value for V) > (value for V),
and does not assign the value ‘“true’ to
(value for V) > (value for V).

As before, machine M is not given X, 7, nor the actual
values associated with the patterns of sub-patterns.
For example, if N = 6, M might be given

¥, = 110101, V, € Q,
V2:001110, VzER,
Vs = 111000, V¢ R,
V, = 011110, V, € Q,
Vs = 111010, Vs € Q,
Vs = 010101, Ve R,
v, = 111110

v, = 001100

This example is considered in Sections 4 and 5.

3. Relationship to the practical problem of character
recognition
Suppose that U comprises an even number of elements,
and let U be divided into two non-overlapping sets, S and
T, of N/2 clements. Further, let 7 be restricted so that
in every subset of w there is at least one element of S
and one element of 7. We say that the intersections of
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the same subset of Uy with S and T are corresponding
subsets, and that sub-patterns on corresponding subsets
are corresponding sub-patterns. Thus G assigns
numerical values to pairs of corresponding sub-patterns.

It is common in practical character recognition to
“recognize” a (perhaps preprocessed) unknown pattern
as the same as the (perhaps preprocessed) stored pattern
to which it is most similar. This calls for the com-
putation of similarity of pairs of patterns, which is
inevitably based on an hypothesis as to how the simi-
larity of a pair of patterns is related to the patterns
themselves. Let us consider the following hypothesis.

Partition Hypothesis. The similarity of a pair of
patterns can be regarded as the value assigned to a pair
of corresponding patterns one on S and one on 7 by a
machine G, as described above. For this, 7 and the
values assigned to pairs of corresponding sub-patterns
must of course be properly chosen. According to this
hypothesis, a pair of patterns can be partitioned into
pairs of corresponding parts, such that the similarity of
the pair of patterns is the sum of the similarities of the
pairs of corresponding parts. This is an hypothetical
generalization of the self-evident fact that a pair of
identical patterns can be partitioned into pairs of
identical corresponding parts.

If we make the simplifying assumption that any
variant is more similar to any other variant of the same
character than to any variant of any other character,
then we have available, in practical character recognition,
implicit data inequalities analogous to those introduced
above in Section 2. For example, suppose that K; and
K, are variants of the same character and K; and K,
are variants of a different character. K, and K, can be
regarded as patterns on S and T whose assigned value
(their similarity) exceeds that of the patterns K4 on S
and K, on T. In practice many example variants are
usually available, so that one has many inequalities of
the form

(value for K; on S and K, on T) >
(value for K, on S and K, on T).

An unknown input pattern, KV, is to be recognized as
the stored example to which it is most similar. The
most similar stored pattern can be found if we can find
for each and every pair of stored variants e.g. K, K,
whether or not it is true that

(value K, on S and K, on T) >
(value for K, on S and K; on T).

Thus the recognition problem has been reduced to
the problem of finding truth-values of inequalities, as in
the problem of Section 2. The problem of finding =
is analogous to the well-known problem of finding
suitable features for pattern recognition. For example,
on the partition hypothesis, it is conceivable that if a 5
were written on S and a 3 on 7, the variants of ‘“west
bay, bottom left” in this 3 and 5 would be corresponding
sub-patterns.
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The partition hypothesis is of interest because of the
prospect of generalization so that, for example, G is not
confined to simple partitions, but instead to more
general sets of subsets of U. It seems impossible to test
the more general hypotheses in practice unless first an
economical computational technique has been devised
in solution to the problem of Section 2, viewed simply
as a computational problem. The computational
problems involved in more advanced hypotheses are
presumably more difficult, quite apart form the question
of validity of the hypotheses themselves. So the present
paper is devoted to the problem of Section 2, and com-
puter simulations, in the nature of pilot experiments,
have been restricted to synthetic data.

4. Algebraic inference
The consistency of the equations

x+2y=28
2x + y=17
implies the consistency of the equations
@t+bt+o+2a+b+d)=Q3+3+2
2@+b+to+ (@t+b+d)=010+4+2),

where x is replaced by the same sum of arbitrary com-
ponents in both equations, and the same is true for y.
The set of components replacing x must differ in at
least one component from the set replacing y. This
elementary consideration is valuable in the solution to
the problem of Section 2.

When G has assigned a value to a sub-pattern on a
subset of U, that sub-pattern itself can be regarded as a
name or symbol for that value. When we know the
sub-pattern but do not know its assigned value, we can
regard the sub-pattern itself as an algebraic unknown.
(It is common to represent an algebraic unknown by
“x”. The symbol “x”, written on paper, is itself a
pattern or sub-pattern).

Just as, above, x was replaced by a sum of arbitrary
components a + b + ¢, it is convenient now to replace
a sub-pattern by a sum of arbitrary components, each
of which is one of the digits of the sub-pattern, regarded
as an algebraic unknown. The symbol “1” in a particular
location in U does not generally signify or represent the
value “one”, but instead, some unknown value. A 1
in a given location in U is regarded as a different algebraic
unknown, a different algebraic symbol, to a 1 in any
other location in U, and the same is true for zeros.

Let us consider the example given at the end of
Section 2. In this it is implicitly given that, for example,

110101 > 001110,

patterns being regarded as algebraic symbols for their
associated values. The data inequalities also include,
for example,

110101 > 111000
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011110 > 111000
111010 > 010101

and the truth value of
111110 > 001100

is required.

Let the elements of U be uy, u,, us, u,, us, and ug, and
let us for clarity rename, for example, a “1” in u, as
“uy,”, and a “0” in us as “usy”. Using this notation
and representing patterns by sums of components, the
given inequalities may be rewritten

Uy + Uy + Uzg + Ugy + Uso + gy >
Uyo + U + U3y + Usy + Us; + U

Uy + Uy + Uz + Uy + Uso + gy >
Uy + Uy + Uz + Ugg + Uso + Ugo

Uyg + Uyy + U3y + Uy + Usy + Ugo >
Uy + Uy + Uz + Uy + Uso + Ugo

Uy + Uy + uzg + ugo + usy + ugo >
Uyo + Upy + Uzp + Usy + Uso + Ugy-

Adding the first, third and fourth of these, and can-
celling out some of the terms common to both sides of
the sum we find

Uy + Uy + Uy + usy + usy + ugo >
U + Upo + U3y T+ Ugy T+ Use T Ugo

which establishes the required truth value.

The problem of finding rules of operation by which a
machine can make such inferences is non-trivial because,
for example, of the problem of deciding which inequalities
to add together. It is not yet clear whether the rules of
operation which we have actually used are heuristics
for which no rigorous mathematical explanation can
ever be given. But it is clear that the rules are essentially
algebraic, in that they manipulate symbols for unknown
values.

5. Program 1
(a) Notation and definitions

Different subsets, partitions, and patterns on U are
distinguished by different lower case, upper case, and
Greek subscripts respectively. Subset subscripts are
such that the same subset has the same subscript what-
ever the partition on U in which it occurs. The range
of an existentially quantified partition subscript is to be
understood to be the range of all possible partition sub-
scripts for a set of N elements. The range of an exis-
tentially quantified pattern subscript is to be understood
to be the range of subscripts of all patterns stored in the
computer. The range of a universally quantified subset
subscript is to be understood to the range of all subset
subscripts in the given partition. For example

@O ABY3B)(Viax = Vigp)
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means “for all i such that V,,.€eV 4, there exists a
partition w5 on a pattern ¥V, where B is in the range
1,2,...u, ¢, p, such that the sub-patterns V4, and
V:pp are the same”.

For any two patterns V,, Vg, where «, 8 are in the
range 1,2, ... u, ¢, p, we define the proposition

Hyp = (VaeQUR)&(VeRUQ)) V (VaeRUQ)&
(VeeQUR)
where, initially, Q’ = {V,} and R = {V}.

We define F, as the set of all pattern partitions on
VisVayeo . Vs Voo Vo For n=1,2,3, ..., we define
F, by specifying that a pattern partition V4, belongs to
F, if and only if

() (ABAB((Vida =
(J#DN&Hop8(V ppeF,— 1))-
Thus every sub-pattern in V4, must be the only sub-
pattern common to ¥ 4, and some other pattern partition

belonging to F,_ such that H,g is true.
We define F,, as the first member of the series

Fo,F,Fy,...Fp,...F,_,F,, ...
such that F,, = F,,_,.

iBa)&("’( 3] )(( VjAa = jBB)&

(b) Computation

The members of Fy, Fi, F,, . . . are found successively
until F, is reached. The program assigns the truth
value “true” to the proposition

Vo>V,
if and only if
(3 AV 49€F,)&(3 B)(VpeeF,).
Otherwise no truth value is assigned to V4 >V,. To
test the reverse inequality, the members of F,, are found

again, but now with Q' ={V,} and R = {V,}; and
V, > V, if and only if

(3 A)(V 44€F,)&(3 B)(V g.€F,,).

(¢) Example
Let us consider the example given at the end of
Section 2. Let the 203 partitions on the set
U=1{1,2,3,4,5, 6} be
Uy =1{1,2;3,4;5,6} = {Uyy, Uz, Usy}
UZ = {19 2; 3’ 4, 5’ 6} = {UIZa U42}
Us;={1,2,5,6; 3,4} = {Us;, U3}

Uzos =

Where Q' = {V4} and R’ = {V}, we find that F; includes
many pattern partitions among which are

Va1 = {V113, Vaze}
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Var = {Vi1, Vaza}
Vis = {Via1, Vass, Vi)
Vas = {Vizer Vaza}
Vis = {Vs3, Vais}
Vas = {V124 Viaai}
Vg = {Vssss Vaid
Vie={Vi22, V23, V3i3}-

Pattern partitions in this list depend on other members
of this list for membership of F,, F3, ... and in fact we
find that F, = F,, so that V, > V, is taken to be true.
In this example the chosen 7 was {1, 2, 4; 3, 4, 6}, and
it is readily verified that Vg, Vgar - - - Ve Voo Ve
all belong to F,.

When Q' ={V,} and R = {V,}, we find that F;
includes, for example,

Vzp = {V123, V422}

but no partition on ¥, or V; belongs to Fj, so that V),
does not belong to F,. In fact F,, is empty and therefore
the proposition ¥, > V, is not taken to be true.

(d) Economy

A disadvantage of program 1 is that it searches through
all possible partitions on all given patterns, which is
economically prohibitive if these patterns have many
digits. The same difficulty arose in previous work
which was concerned with equalities rather than ine-
qualities. When it is given that the values associated
with all generated patterns are equal, there is no point
in distinguishing between Q, Q’, R, R’, and in fact
“H,s” degenerates to “a 7 87 in the condition for
V «€F,, giving the condition that was actually used
(Ullmann, 1966). A technique for achieving economy
by n-tuple sampling (Ullmann, 1965) was found to work
with the equalities program, which suggests that it
would also work with the present inequalities program.
But this sampling technique achieves economy only at
the expense of error, and therefore an alternative
method for avoiding working through all possible
partitions has been developed and is presented below
(program 2).

In order to run program 1 reasonably quickly, we
bave provided it with information as to the choice of
g, wWhich means that it has to search through fewer
partitions. If 7 is completely given, program 1 needs
only to search through all partitions on a set whose
elements are the subsets of 7, and the definition of F,
is unchanged. In the previous work on equalities, and
in experiments 5 and 6 below, the program is given no
information as to the choice of 7.

6. Experiments with program 1

Experiments 1 to 4 were pilot experiments on eight-
digit labelled patterns generated in accordance with
Section 2. A number of labelled patterns were suc-
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cessively read by program 1 and simply stored as
explained below. After this, when the rth pattern was
read, if it belonged to Q it was taken as ¥V, and the
most recently stored member of R was removed from the
list of stored Rs and taken as V,. Alternatively, if the
rth pattern belonged to R it was taken as ¥, and the
most recently stored member of 0 was removed from
the list of stored Qs and taken as V. Program 1 then
searched through F,, Fy, . .. to find F,. If the correct
truth value was assigned to an inequality this was counted
as success with the rth pattern, and if an inequality
known to be false was assigned “true” this was counted
as a failure.

In practical character recognition it would be absurd
to store every pattern ever presented to the machine.
Instead only sufficient patterns (or information abstracted
from them) to allow correct recognition of all future
patterns need be stored. So in experiments 1 to 4,
patterns were stored according to the following rules.

If the first pattern to be read by program 1 was a Q
it was stored in a list of Qs and if an R it was stored in a
list of Rs. The same applied for subsequent input
patterns until two members of Q and two members of R
had been stored. For the next input pattern, program 1
worked through to find F,. (When fewer patterns had
been stored F, would probably have been found empty.)
For subsequent values of =, the 7th pattern was stored
if labelled Q in the list of stored members of O and if
labelled R in the list of stored members of R only if
success was not achieved with the rth pattern. Patterns
which had been removed from the Q or R lists and
taken as V,, or V, were returned to the lists whence they
had been removed before the (= + 1)th pattern was
read. A run was a sequence in which all patterns V; to
V, from the generator were read in turn and processed
as has been described.

The programs were written in Elliott ALGOL:
experiments 1 to 4 were run on an Elliott 503 and 5
and 6 on Atlas.

Experiment 1

The purpose of this experiment was to find how the
choice of ¥ in the generator affected the success rate of
program 1, with = given. Ten runs were made for
each choice of ¥, the choice of sub-patterns and their
assigned values being different in each run (and actually
derived from a pseudo-random number generator).
With £ = {2, 2, 2, 2} a run took roughly one hour, and
with X ={3,2,2}, roughly twenty minutes. The
different rows of Table 1 correspond to different 2.
The different columns show the numbers of successes at
each 7 from ¢ — 5 to ¢ in the course of ten runs. No
failures occurred in this experiment.

From these results it appears that program 1 computes
the truth value of a sufficient but not necessary con-
dition for V> V,, since this condition never fails but
is not always succesful. It also appears that the success
rate is higher the more subsets there are in 2.
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Fig. 1.—Performance with completely and incompletely
specified G

Experiment 2

When 7, has three subsets ‘known” to program 1,
the set F,, contains five partitions per pattern since there
are five possible partitions on a set of three elements. If
m were completely unknown to program 1 there would
be 4,140 partitions per pattern in Fy, since this is the
number of possible partitions on a set of eight elements.
Experiment 2 investigated a compromise between these
extremes, in which w; was incompletely specified as
follows.

The set U was partitioned into two equal sized parts
S and T, which were partitioned into three pairs of corre-
sponding subsets, as described in Section 3 above. The
partitions on S and T were given to program 1, but
which subset on S corresponded to which subset on T
was left unspecified, and in fact F,, contained 16 parti-
tions per pattern. X was chosen to be {3,2,2}. In
Fig. 1 the circles give the numbers of successes at various
values, counted over ten runs. There were no failures
in this experiment The crosses are the corresponding
Y = {3, 2, 2} results from experiment 1.

Applying the chi-squared test to these results we find

X2=1-09
whereas from tables
X2, % = 5-99

which indicates that the runs with incompletely specified
7 did not give significantly better results than when =
was specified completely.

Experiment 3

In practical character recognition it is sometimes
possible to find a character variant which intuitively
seems more similar to a variant of a different character
than to another variant of the same character. But a
variant is most likely to be more similar to another
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Table 1
Performance of program 1

{ 222 3yyo0o /0|0 0|3 4

3,2,2

4,2,2 W2 3 4 2 5 4

4, 4 Y 2 (3 | 2| 3| 4| 4

3,32 ) 4| 5|3 [3]7]6

{ 2,222 3} 61|19 9|9 | 6| 8

variant of the same character rather than to a variant
of a different character. This consideration led to the
present experiment in which the first n patterns read by
program 1 were deliberately mislabelled. For example,
if the first pattern had been assigned by G to R, it now
had its label changed to Q. Ten runs were made with
n =123, with £ ={3,2,2}. The results for n =0
are available from experiment 1. As explained above,
program 1 did not attempt to find F,, unless a certain
number of patterns had first been stored. Fig. 2 shows
the numbers of successes and failures per attempt per
run, averaged over ten runs, for different n. This experi-
ment indicates that the percentage drop in success is
greater than the percentage of patterns mislabelled.

Experiment 4

One of the principal difficulties in the development of
program 1 into a practical recognition technique is that
the computation of F, has to be repeated for every
different pair, V4 V,. Purely sequential operation like
this is so impracticable that it is of interest, even at this
early stage, to see whether program 1 works when Q’
and R’ each have more than one member.

In experiment 1 F, was found first for Q' = {Vy},
R ={V,} and then for the reverse inequality with
Q' ={V,} and R = {V,}. In experiment 4, F, was
found only once, with Q" = {V;, V,} and R’ = {V,, V},
so that the inequality and reverse inequality were tested
simultaneously. The inequality ¥V, > V, was taken to
be true if ¥, in Q' and V, in R’ each had at least two
partitions in F,,; and the reverse inequality was taken to
be true in ¥, in @’ and V, in R’ each had at least two
partitions in F,. (Two partitions rather than one were
required because pattern partitions induced by the
trivial partition with only one subset on the members of
0O’ and R’ inevitably belonged to F,). Ten runs were
performed with X = {3, 2, 2} and =g completely speci-
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< Od:nous success
X denotes failure

O-3—

02—

Average number of successes or failures per attempt

| l

o 1 2 3

Tl —_—
Fig. 2.—Success and failure rates with mislabelled patterns

fied, and Table 2 compares the results with the corre-
sponding experiment 1 results. This shows that the
cost of speeding up the program by testing both ine-
qualities simultaneously is an appreciable deterioration
in performance.

7. Program 2

(@) Notation and definitions

Let Z be the trivial partition on U whose subsets are
the single elements of U, so that, for example, U, and
U, are single elements of U. Program 2 processes pairs
of digits in which each digit belongs to a different pattern
but is located in the same element of U. It is convenient
to introduce a special notation in which x«f is the digit
pair {V,zs Vizp}. This applies for any «, B from 1 to 7.

We define the sets Cy, Cy, C,, ... C,, ...and Dy, Dy,
D,...D,,...of digit pairs by means of the following
conditions:

xafeC, if and only if Hug & (Viza # Vizp)

xafBeDy if and only if Hyg & (Viza =

xafeC, if and only if

Hop & (3y)(yaBeC,_ ) & (3TN §)({xaT, yal,
xB38, yB8} CD,_1))

xafeD, if and only if

xZ| B)
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Table 2
Comparison of performance in experiments 1 and 4
SUCCESSES FAILURES
PER ATTEMPT PER ATTEMPT
S.D. OF S.D. OF
AVERAGE AVERAGE AVERAGE AVERAGE
experiment 4 0-44 0-43 0-13 0-20
experiment 1 0-47 0-51 0-00 0-00

(xaBeD,_1) & (M((yapeD,- 1) V (yxBeCy) &

(A1) (o, yB8} C Dy 1) & ({xaX, xB8} C Co))))-
We define D, as the first member of the series Dy, Dy, . . .
D, ...D,_,D,,...suchthat D, = D,_,.

(b) Computation

Program 2 finds successively the members of Co, Cy,
Cy,...Dg, Dy, Dy, ... until D, is reached. The pro-
gram assigns the value “true” to the inequality V5 > V,
if and only if every digit in ¥, and ¥, belongs to at least
one digit pair belong to D,. The same criterion is
applied when D, is found again with Q" = {V;} and
R’ = {V} to test the reverse inequality.

(c) A note on the relationship between programs 1 and 2

For the purpose of this perfunctory comparison, let
us define C’ and D’ as sets of pairs of digits (the element
of U being the same for both members of each pair),
belonging to not-identical and identical sub-patterns
respectively. Let us consider the condition given in
Section 5(b) for V eF,, and let us consider a digit
V.25 in V; 40, Where V, 4, is the only sub-pattern common
to V4 and Vgg. Any other digit V,z, must also belong
to V4« in which case

yafeD’ (i)

or V,z, must belong to some other subset V; 44, in which
case
(B340 = Vjex)
and thus
yaXeD’. (ii)

It is also necessary that if Vg includes a sub-pattern
Vige, then Vips 5 V4q, since Viga is to be the only
common sub-pattern, and thus

xafeC'. (iii)
Furthermore, ¥y is to be the only common sub-pattern
between V4, and Vgy, so that since V,z, is overlapped
by V;a it follows that

xaYeC’. @iv)
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Combining (i), (ii), (iii), (iv) we obtain the insufficient
condition x«BeD’ if

(((yoeBeD’) V (yapeC’) & (AT)(yaYeD’)
& (xaYeC)))>.

The analogy between this and the condition for xofeD,
is sufficiently obvious to throw a little light on the
relationship between programs 1 and 2.

8. Experiments with program 2
Experiment 5

Before D, was computed, it was required only that at
least one member of Q and one member of R had been
stored. In this experiment, runs were made with two
different values of N, the number of elements in U.
Otherwise experiment 5 differed from experiment 1 only
in the use of program 2 rather than program 1. Table 3
shows the number of successes with 7= — 5,  — 4,

., . There were no failures in this experiment, and
mg was completely unspecified. The results indicate
that the performance of program 2 is similar to that of
program 1.

Experiment 6

In Section 3 it was pointed out that the partition hypo-
thesis is an hypothetical generalization of the fact that
identical patterns may be partitioned into corresponding
pairs of identical parts. Whatever the partition on one
pattern there exists an identical partition on an identical
pattern, such that the pairs of corresponding sub-
patterns are identical. Generalizing this, we do not
expect to find just one partition such that the similarity
of two patterns is the sum of the similarities of the parts,
but rather, a whole class of partitions for which this is
so. For simplicity, the machine G had hitherto been
confined to a single partition g, but in experiment 6 it
used two partitions, wg and mg. (To use more than
two partitions in G, or to use larger N, it would have been
necessary to combine program 2 with an n-tuple economy
technique (Ullmann, 1965), in order to overcome storage
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space limitations. But the added complexity seemed
unwarranted at this stage.)

In experiment 6, the generator G generated patterns
Vig to V4 and labelled them exactly as in Section 2.
It then generated another ¢ patterns Vg5 to Vyy in the
same way, but based on 7y rather than =g, with labels
assigned as before. If any pattern in V,y to Vyy was
the same as any pattern in Vs to Vg, the patterns
Vig to Vyu were rejected and replaced by a newly
generated set. The labelled patterns Vs to Vys and
Viu to Vyg were then shuffled up into random sequence
and presented to program 2 as a run of 2i labelled
patterns, the experimental procedure being otherwise
the same as in experiment 5. Program 2 itself was not
modified, and ten runs were made, with N = ¢ and
T = {2, 2, 2} giving the following results:

Average number of failures per run  1-1
Average number of successes per run 2-6.

This shows that the introduction of a second partition
causes deterioration of performance.
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Book Review

Theory of Self-Reproducing Automata, by J. VON NEUMANN,
edited and completed by A. W. BURKs. 1966; 388 pages.
(University of Illinois Press, 75s.)

This volume contains von Neumann’s far-reaching ideas on
automata. Scientists will be thankful to Arthur Burks for
presenting von Neumann’s lectures and manuscripts, so
making his last work on computer science available to the
public.

The breadth of von Neumann’s contribution to computer
science, including automata theory, is well summarized in the
editor’s introduction. Von Neumann was particularly
interested in large-scale natural (nervous systems) and
artificial automata. He worked towards a theory of the
logical organization of complicated systems of computing
elements and believed that such a theory was an essential
prerequisite to the construction of very large-scale com-
puters. The two problems on which he worked in detail—
reliability and self-reproduction—are both related to problems
of complexity. Because of his premature death in 1957 it
was left to Arthur Burks to put von Neumann’s research on
automata into final form.

Part I of this work is an edited version of a recording of
five lectures on “Theory and Organization of Complicated
Automata” delivered by von Neumann at the University of
Illinois in 1949. Part II is an edited version of an unfinished
manuscript entitled “The Theory of Automata: Construction,
Reproduction, Homogeneity,” which von Neumann started
in 1952 and worked on for a year. It is largely concerned
with the problem of self-reproduction of automata. Von
Neumann’s manuscript is incomplete: in Chapter 5 Burks
completes the design of a self-reproducing automaton.

A fundamental question in the theory of automata is
“when is a class of automata logically universal; is any single
automaton logically universal”? Von Neumann recognized
that Turing had provided an answer to this question by
showing that any logical process (computation) that can be
effected by finite but arbitrarily extensive means can be
performed on a Turing machine and that there is a single
such machine that can perform any given computation.
Von Neumann raised and answered analogous questions
concerning construction:

(a) Can an automaton be constructed by another auto-
maton ? What class of automata can be constructed by
a single suitable automaton ?
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(b) Is any single automaton construction-universal ?
(c¢) Is there a self-reproducing automaton ?

In developing the answers to these questions von Neumann
considered two methods of self-reproduction. The “kine-
matic model” is discussed in Part I (the Illinois lectures).
Part II discusses the ““cellular model”, a conception stimulated
by Ulam. In this model, reproduction occurs in an in-
definitely large space regularly divided into cells, each of
which contains a copy of a single finite automaton. Von
Neumann chose for detailed development an infinite two-
dimensional array of square cells each of which contains a
copy of a certain 29-state finite automaton. The structure
of this automaton is given in Chapter II by defining its
“transition rule”, the function which gives its state at time
t + 1in terms of its own state and those of its four contiguous
neighbours at time 7. The temporal reference frame for the
cellular structure consists of instants . . . —2, —1,0,1,2...
All cells are in the same quiescent state at negative times.
At time zero this total homogeneity is perturbed by changing
the states of the automata within a bounded area 4 of cells.
This homogeneity will, in general, propagate into the sur-
rounding area, the course of this activity being uniquely
determined by the transition rule of the automata and the
conditionsimposed at t = 0. 1In the case of self-reproduction
the inhomogeneity of area A4 spreads until at time ¢ and area
A’, disjoint from A, is so organized that the states of automata
in A" and in A4 at time ¢ are identical to the corresponding
states in A4 at 0.

Von Neumann constructs self-reproduction as follows.
An automaton, abstractly conceived, consists of a finite-state
mechanism reading and writing on an infinite tape. Such a
system can be embedded in the 29-state cellular structure by
reserving an infinite array L of cells to act as the tape, the
finite state mechanism being realized by a certain assignment
of states to a finite set of cells adjoining L. In Part II is
shown in detail the embedding in the cellular structure of a
certain automaton M, analogous to a universal Turing
machine, with the property: for each initially quiescent
automaton M there is a description D(M) of M (coded in
terms of states of cells) such that when D(M) is placed on
L, M, will construct M. Thus M, is universal in the sense
of question (b). Question (c) is reduced to (b) by showing
how M, can reproduce itself. In essence this is accomplished
by placing a description of M, itself on L.

J. P. CLEAVE (Bristol)
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