Algorithm for drawing ellipses or hyperbolae with a digital plotter
By M. L. V. Pitteway*

An efficient algorithm is presented for drawing or displaying conic section curve segments, each
incremental move being chosen by the computer to minimize the displacement from the intended
curve. The inner cycle consists of three additions and one test for each move. Two further
additions are required for display devices which do not accept incremental commands, and two
further tests are required to detect possible changes of sector.

1. Introduction

In a recent paper (Bresenham, 1965) an algorithm is
established for computer control of a digital plotter
drawing straight lines. The object is to choose the com-
bination of pen movements to produce the best possible
approximation to a straight line between two points as
shown in Fig. 1, without using more central processor
time than necessary. For any specified straight line,
only two of the eight possible pen movements will be
required; the problem divides naturally into eight
separate segments or “‘octants” of move combinations
according to the direction of the line, and the treatment
summarized below for the first octant can be extended
to the other seven by including an initial test on the line
gradient.

A flow chart for Bresenham’s straight line algorithm
is given in Fig. 2 using the notation of this paper. Its
validity is established as follows: After completing n
moves, the pen will have reached the point n, j,, where
0 < j, < n and the unit of length is taken as the pen
move 1. The next move is chosen as shown in Fig. 3
to minimize the distance between the pen stopping place
and the intended straight line. The smaller distance is
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Fig. 2.—Flow chart of Bresenham’s algorithm for choosing
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Fig. 1.—Choice of moves for drawing the straight line wy = vx in the first octant #> v> 0. A single horizontal pen

movement is taken to be the unit of length, and is referred to as ‘‘move 1.

The diagonal pen movement ‘‘move 2’’ is auto-

matically produced by a combination of horizontal and vertical movements
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Fig. 3.—The best fit is determined by choosing the smaller of
rp+1 and g,41. For a straight line, y at x = n + 1 is equal
to vx/u

associated with the smaller of r,.; and g,,, (similar
triangles), and the difference between these two quantities
defines d for the test in Fig. 2:

dn‘l = u(rn+l — qn- l)

=20(n + 1) — u(2j, + ). (1)

u is positive, so cannot affect the sign of d. Equation (1)
gives rise to the recurrence relations:

dn+l = dn + 2v — 2u(jn _jn—l) forn> 1

and
d =2 —u. (2

The previous move gives j, — j,_; = 0 if d, <0, and
Jn—Ju—1=11if d, > 0, i.e. d is increased by 2v after
move 1, and is decreased by (2u — 2v) after move 2.

Before using the algorithm to draw a particular
straight line, it is first necessary to move the ends of the
line to the nearest grid point at which the pen can start
or stop, as in Fig. 1. This slight displacement of the
intended line can be avoided if a small residual displace-
ment is introduced into the initial value of 4. This
correction term must also be included if the algorithm
is to be resumed after an interruption. The previous
argument can be repeated if the line is still supposed
to pass through the point 0,0 so that the pen mesh
points are displaced to start from O, €; d,,,; becomes
2v(n 4+ 1) — u(2j, + 1 + 2¢), where it is reasonable to
suppose that —1/2 < e << 1/2. Alternatively, the line
itself can be displaced from a 0, 0 mesh point origin by
writing y =)  — €, so that its equation becomes
uy’ — vx = ue = k/2 (the constant k/2 is chosen to
match the quadratic form (3) in the next section). The
initial value of d is set up by writing b — u + k—d as
the third statement after “start” in the Fig. 2 algorithm;
no other part is affected by the change.

While the preceding arguments have been directed
towards digital control of a digital plotter, a similar
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technique could be used for cathode ray tube display
devices in which points are selected for brightening by a
computer command specifying x and y coordinates.
“Move 1” requires the adjacent point in the same row
or column to be next selected, and “move 2’ requires
the move of a king piece in the game of draughts or
checkers. Most devices of this type require absolute
values for x and y instead of the incremental commands
of a digital plotter, so an extra addition is required in
the “no” circuit of Fig. 2 to keep track of the y co-
ordinate, while the terminating count can be adjusted
for x. Vector displays generate straight lines auto-
matically, and similarly analogue techniques can be
used to maintain curved displays (Dertouzos and
Graham, 1966) except that it proves convenient to use
mathematically more complex shapes than the quadratic
forms of this paper. It is, however, possible that a
special hardware implementation of part of the conic
section algorithm could be useful in future applications;
only additions and simple tests are involved in the inner
loop, and it should be possible to drive these at the
speeds required to set up a reasonable display.

2. Introduction to the quadratic form algorithm

The general equation for a conic section is given by
the form:

ay? + Bx2 + 2yxy + 2uy — 2vx = k. 3)

The minus sign is introduced with » to match the
straight line notation of Section 1 in the special case
o = 8 =y =0, and the twos with y, u and v to simplify
the derivative equation (4). For simplicity k is taken to
be zero in the main discussion, so that the intended
curve passes through the starting point 0, 0; the effect
of this residual displacement term is discussed at the end
of Section 3. It is also assumed that the curve is
initially directed in the first octant so that 0 < v < u:
the sign of the equation can be changed throughout if
necessary, though strictly # and v both negative implies
starting in the opposite direction, i.e. in the fifth or sixth
octants.

Differentiating (3) with respect to x gives equation (4):

dy _v—PBx—yy
dx  u-+yx+ oy

Q)

This form suggests that the constant b in the straight
line algorithm should be replaced by the varying
quantity 2(v — Bx — yy), and the constant a by
2(u + yx 4+ ay) — b; this is how the conic section
algorithm operates. After each move x increases by 1,
so b is decreased by 28 and a is increased by (2y + 28).
After move 2, y also increases by 1, so b is decreased by
a further 2vy, and a is increased by a further 2« 4 2vy).
A change of octant is required when a or b become
negative, and the starting values for a and b are carefully
chosen to stop errors accumulating (Section 3).
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The basic algorithm suggested by this procedure is
shown in Fig. 4, where at the start of the run the constant
k, should be set equal to 28, k, and k4 to 28 + 2, and
k3to2a +28 +4y. This is also made plausible by con-
sidering the limit if the step size of the plotter is supposed
to become infinitely small. The “best fit” quality of the
algorithm is not established until Section 3, but the
following argument does show that Fig. 4 can be used
as an alternative to the algebraic definition (3):

In making N 4+ M very small moves, the “yes”
circuit in Fig. 4 may be passed N times, and the “no”
circuit M times. The resulting move in the x direction
dx =N+ M, and dy = M, so dy/dx = M/(N + M).
Similarly, da = k,N + kM and db = — kN — k4M;
these can be integrated to give a = k,x + (k3 — kj)y + aq
and b = — kx — (k4 — ky)y + by, where a, and b, are
constants. If it is assumed that ¢ and b do not change
appreciably during the move dx, the construction of the
changes to d in Fig. 4 implies (by comparison with the
straight line algorithm, for example) that dy/dx = b/(a+b),
which gives the differential equation:

‘2: by — kix — (ks — k\)y
dx  ag+ b+ (ky — ky)x + (ky — ky + ks —ka)y

Equations (5) and (4) can be matched by choosing
ay + by = 2u (this being just a convenient normalizing
condition to match the straight line algorithm), b, = 2v,
ki=2B,k,=ky=2y +2Band k; = 2a + 28 + 4y
as expected. The full algorithm developed in the next
section includes correction factors in the initial value of
b, which is in fact 2v — B — 9, but this has no affect in
the very small step limit.

The algorithm of Fig. 4 can be generalized to include
the case when k, is not equal to k,. An extra degree of
freedom is introduced into equation (3), but a detailed
study of this generalized algorithm is beyond the scope
of this paper.

©)

3. The first octant

The “best” incremental approximation to the intended
curve is defined in this paper by choosing each pen move-
ment to give the smaller distance, measured in a direction
parallel to the y axis, between the pen stopping point
and the intended curve, i.e. the smaller of r,; and g, ,
again. The stopping point is not necessarily the closest
to the curve if the gradient of the intended line changes
appreciably during one increment, but it still seems a
reasonable and convenient working choice.

Special case o« = 0

In order to avoid unnecessary complication at this
stage, the special case when « = 0 is considered first, so
that equation (3) can be solved for y without introducing

a square root:
_ x(v—Bx/2)

u—+ yx ©)

Divisions are avoided by introducing the multiplying
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Fig. 4.—Algorithmic definition of a conic section (when

ky = k4) corresponding to equation 3. Each move involves

just one test and three additions, so demands upon the central
processor are modest

factor (u + yx) into the definition of d replacing equa-
tion (1). This would cause the algorithm to fail if it was
possible for (¥ 4+ yx) to change sign, but when o« =0
this implies an infinite gradient in equation (4), and this
is not possible in the first octant considered here:

dpy1= (Tpp1 — que D@ + yn + y)
=Q—PF—Bm+1)—w+yn+ )2+ 1. ()

This leads to the recurrence relations:

dn+ 1=dn+2v_ﬁ(2n+1)_'}’(2Jn+1)_2(u+yn)(.]n_jn— l)
and d=2v—u—B—y. ®)

Comparison with the straight line algorithm shows the
form for b and a:

b=2v—B2n+1)— y2j,+1)
a=2u+ yn) — b. Q)

It is convenient to set up the algorithm as shown in
Fig. 4 so that b and a are incremented immediately
before making the change to d, so that the initial value
of b =2v — B — yanda = 2u — b. The full algorithm
incorporating these terms is flow charted in Fig. 5
(which also includes a term «/4 and a residual displace-
ment term k established below). The curvature terms
ky, k, and k; retain the values of Section 2, and the
algorithm reduces to the expected straight line form of
Fig. 2when a = 8=y = 0.

and

General case o« %= 0
When « = 0, equation (6) is replaced:

_ —u—yx + V[ + yx £ aox — Bx)]

[+

(10)

The positive square root is required to match (6) in the
limit «—0, and y =0 at x = 0. The square root is
inconvenient, and must be eliminated before a suitable
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Fig. 5.—The complete conic section algorithm. Two additional

tests are introduced to detect changes of octant, and some

provision must be made in any particular implementation to
terminate when the required arc is completed

Diagonal octant change
procedure, figure 9.

generalization of (7) can be established. This can be
done by restricting the investigation to the critical con-
dition d = 0, which requires r,,; = ¢,, in Fig. 3, i..
2y — 2j, — 1 = 0. The square root part of y can then
be taken over to the right hand side, both sides squared,
and multiplication throughout by o« gives the critical
condition:

Qv — Bx)x — (u + yx)(Z, + 1) — a(j, + 1/2)> = 0.(11)

Comparison with the right hand side of equation (7)
(replacing x by n + 1) suggests an additional term,
—ofj, + 1/2)%, in the definition of d,,,. Effectively,
the multiplying factor (¥ 4 yx) introduced into (7) is
generalized and replaced by (12):

Hv/[(u + yx)* + a2vx — Bx?)]

+ U+ yx) + «(j, + 1/2)}.  (12)
This multiplying factor is formed by changing the sign
of the square root in (r,, ; — ¢,4 ) to establish a form

corresponding to the difference of two squares, with a
multiplying factor «/2 introduced to match (7) in the
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limit « —0. Again, the algorithm will fail if (12)
changes sign, but this is also unlikely in the first octant
unless the curve turns very sharp, a point discussed in
Section 4.

The left hand side of (11) is the residue of the quadratic
form (3) evaluated at the critical point x, j + 4, and when
taken as a modified definition of d,, ; applicable for any
a, leads to the recurrence relations:

dpyy=dy +20— p2n+1) — y2j, + 1
—(in — Jn—1)Qu + 2yn + [l +j, + ju—1])
and d=2v—u—B—y—af (13)
The algorithm requires b and a:
b=2v—B2n+1)—y2j,+1)
and a=2u—+ yn + «j,) — b. (14)

These formulae are implemented in Fig. 5. The division
by 4 (a simple right shift two places on most binary
computers) can be avoided if « is replaced by 2«, and
logically B by 28 as well so that the twos can be dropped
in the basic form (3); alternatively, the other initial values
in the algorithm can be scaled up.

Residual displacement term

As in the cast of the straight line, the intended arc may
not start from an exact mesh point. It is convenient to
displace the curve rather than the mesh points in
generalizing the analysis, so that the curve takes the
form (3) with k£ = 0, though k should be small enough to
make the starting point the same point that would have
been reached by the algorithm in drawing the previous
part of the curve. Following the previous analysis, the
modified equations yield

dpy1 = (v — Bx)x — (u + yX)(%n + 1)
— o(ju + 1/2)* + k,

so the addition of k to the initial value of d is the only
change required.

4. Octant changes

With the introduction of curvature it is possible for
dy/dx to become greater than one, or to become negative,
so that a change of octant may be required. A satis-
factory algorithm must include provision to follow
several changes of octant so that a complete ellipse, for
example, can be drawn with the pen closing exactly to
its starting point. The two possible types of octant
change are considered separately. The simpler *“square”
change occurs if the gradient becomes negative; this calls
for a change in the specification of move 2 and a reversal
of the y direction. The “‘diagonal” octant change occurs
when the gradient becomes greater than one, so that
move 1 is changed. This involves an interchange of x
and y, so that in the second octant the “best fit” is
determined by measurement parallel to the x axis instead
of y. In establishing the octant change procedures, only
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Fig. 6.—A square octant change occurs when b becomes nega-
tive, so that dy/dx becomes negative. The specification of
move 2 is changed

n+l, Jn-i

the current values of k,, k5, k3, b, a and d are involved;
there is no recourse to the coefficients in the original
equation, so a sequence of octant changes can be set
up without further analysis. The new move 2 for a
square octant change, or move 1 for a diagonal octant
change, depends only upon the current octant.

Square octant change

A square octant change is required when b becomes
negative, as shown in Fig. 6. The octant change is called
from the Fig. 5 algorithm before the new (and in this
case spurious) value of d is used to select a move. b is
advanced before d in the algorithm, so the previous move
from a valid d formed with a positive b has been com-
pleted. To avoid the confusion of an axis change, the
previous analysis can be repeated, noting that j,=j,_;—1
after making a new move 2. This gives the new recur-
rence relations, and the necessary starting values can be
retrieved from the current values of k4, k,, k3, b, a and d.
The new required d,, ; = (2j, — 2y — 1) multiplied by
a suitable factor, which in this case is obtained from (12)
by changing the term «(j, + %) into «(j, — ).

The newd,,; = — (2v — Bx)x + (u + yx)(2j, — 1)
+ a(jn - %)2
= —d—a— b — 2y as already
evaluated.
The new b,,;, = —2v + B(2rn 4+ 1) + y(2j, — 1) and

a,.1=2u+2yn+2aj,—b, |, so the new b=—b—2y as
already evaluated, and the new a = a + 2b + 2y as
already evaluated. The new k; = — 28, k, =2y — 28
and k; =4y — 2a — 28, so that in effect « and B
change sign.

The complete transformation can be achieved by the
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change move 2
kz-kl-’w
|
w+kl'-'k2

la-w--k_;-'k3

=b-wb
b-a-dd
a=-2b-wa

Fig. 7.—Algorithmic representation of a square octant change.
Only local values are required, so the transformation can be
repeated without further modification to the algorithm

/nol ,v(at x=1n+1)

x(at y=4 +1),5 21

1,301 ﬁg - 1 141,541
new
move 1
—
j'n"’n 4> 1n‘:""’n

old move 1

Fig. 8.—A diagonal octant change occurs when a becomes

negative, so that dy/dx > 1. The specification of move 1 is

changed, and the ‘‘best fit’> now requires measurement parallel
to the x axis

operations shown in Fig. 7, where for convenience w is
introduced as workspace. The instruction order must
be preserved, as for example the expression for d is
formed using the new value of b and the old value of a.
A double transformation returns to the original values
for any ky, k,, k3, b, a and d.

Diagonal octant change

The numeric value associated with the new move 1
after a diagonal octant change is move 2 minus the old
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Fig. 9.—Algorithmic representation of a diagonal octant
change. As in Fig. 7, only local values are required

move 1 for many computers, as the diagonal move is
often specified by the addition of the numeric values of
the two simultaneous square moves. After the change x
is no longer incremented on every move, so it is necessary
to replace n by i, for x in the algebraic formulation; i,=n,
however, at the changeover point from the first octant.
The geometry of the diagonal octant change is shown
in Fig. 8. The notation requires care, because the
spurious d already formed involves the value of y at
x =i, + 1, while the required d involves the value of x
aty=j, + 1.

In the new octant, j,,  =j, + 1, and i, is increased
only after a move 2. The required

dn+l = [2x(aty=j,, + 1) —2i, — 1]

multiplied by a suitable factor. Following the previous
analysis with x and y interchanged, the required

dn+1 = (2u '}_ “y)y - (’U - ')’J’) (21n + 1) + :B(ln + 1/2)2

where y =j, + 1 (not its meaning in Fig. 8).
this it can be deduced that

dio1=b+a2+30/4— B/4+y/2—d
as already evaluated. From the new recurrence relations,
bppr=2u+ o2, +1) +yQ2i, + D=a+b+a+y
as already evaluated,
a,i 1 = 20 — 2Bi, — 2y,
as already evaluated,
ki=—2a,ky=—200—2yandky= — 20— 23 — 4y.

The complete transformation can be achieved by the
operations of Fig. 9, which again has the nil double
transformation property. The division by powers of
two can only be avoided by permitting the six quantities

From

b= —a—atp
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+4++ 4+
Fig. 10.—The algorithm’s selection of moves to fit the ellipse

36y% + 29x2 + 24xy + 720y — 60x = 0. The minor axis

length is 20, and the major axis has length 30 and is set at an

angle 0 to the x axis where sin® = 0-6. The ellipse passes

through the mesh points indicated in the figure. The algorithm

will complete the second half of the ellipse, restoring k;, k,, k;,
b, a and d to their original values

ki, k,, k5, b, a and d to increase by 8 after every diagonal
octant change, which is unsatisfactory. Right shifts are
fast on many machines, and octant changes should occur
far less often than regular moves, so it is not unreasonable
to permit their use here.

An example

The complete algorithm with octant changes has been
extensively checked by hand, and an Atlas Autocode
program has been developed and run successfully on the
KDF 9 in the Cripps Computing Centre, Nottingham
University. Fig. 10 shows a particularly simple ellipse:

36y2 + 29x2 + 24xy + 720y — 60x = 0.  (15)

This ellipse has a major axis length 30, a minor axis
length 20, and if plotted symetrically about the origin
(x%/9 + y*/4 = 25) passes through the four points
x= 412, y= + 6. The ellipse (15) passes through
the origin with a gradient of 1/12, so it is possible to
start in the first octant. Following the algorithm, the
initial values of the six quantities involved are shown in
Table 1. There is a change to the eighth octant after
one move, to the seventh octant after another thirteen
moves, to the sixth octant after another eleven moves
(though this change could equally well be made after
ten moves when it happens that 5 = 0), and to the fifth
octant after another five moves. Then, after a further
five moves, the pen reaches the mesh point 12, —24,
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which is exactly half way round the ellipse; at this point,
ki, k,, k5, b, a and d all have the value they started with,
so the process repeats exactly except that the moves
occur in the fourth, third, second, and finally back to
the first octant to close the ellipse and restore the
original values again. The values of the six quantities
after each octant change are shown in Table 1.

. Table 1

Initial 8 7 6 5
ky 58 —58 72 —72 58
k, 82 —34 48 —96 82
ks 178 —82 82 —178 178
b 19 15 600 96 357
a 701 729 8 538 99
d —350 —379 4843 —4723 151

Starting values in the other octants

In a general implementation, the algorithm must
permit a start in any octant. This could be programmed
through a series of consecutive octant changes at the start
until an octant is found in which both b and a have
positive initial values, but it is easy enough to write out
all the possible starting values in full; these are presented
in Table 2. The relevant octant can be selected by tests
on u and v as follows:

If |u| < |wv|, the initial octant is 2, 3, 6 or 7;
if u < 0, the initial octant is 3, 4, S or 6;
and if

In many applications, the coefficients of the quadratic
form (3) will not be given outright. Instead, the curve
may be required to pass through five given points, or the
end points may be specified with starting and finishing
gradients and some curvature parameter (Dertouzos and
Graham, 1966). It may then prove more convenient to
rewrite the first part of the algorithm to set up the initial
values of ky, k,, k3, b, a and d from the given parameters.

v < 0, the initial octant is 5, 6, 7 or 8.

Degenerate case

The Fig. 5 algorithm assumes that the gradient changes
reasonably slowly, so that only one octant change will

be required at a time. It is interesting to study the
behaviour of the algorithm in a degenerate case when
the conic reduces to two straight lines:

(14y — 10x) Oy — 2x — 19) = 0. (16)

The two straight lines, both directed into the first octant,
intersect in the region of the fifth pen movement. The
intended line passing through the origin is 7y — 5x = 0,
and has been drawn out properly by the straight line
algorithm in Fig. 1. The Fig. 5 algorithm follows the
lower line after the intersection, as shown in Fig. 11. As
the pen moves towards the intersection, b and a both
decrease. After four moves, b becomes negative,and there
is a square change into the eighth octant; b remains
negative after the change, however, so the algorithm
returns to the first octant after the next move, and this
is repeated after seven moves.

In this particular case it can be argued that the
algorithm has behaved reasonably in following a hyper-
bola formed by passing a plane very nearly through the
apex of a cone with a wide angle, but the lines can also
be formed from a narrow cone so that the intended
“hyperbola” doubles back into the fourth octant towards
the mesh point 0,2. In the degenerate case there is
nothing to choose between the two interpretations, but
a small change in the coefficients of equation (16) could
prevent the factorization and make the intended line
double back. A very small change in the coefficients will
not affect the operation of the algorithm in selecting its
discrete steps, so the drawn line will jump the gap to
the other branch of the hyperbola; this behaviour must
be expected when the gradient changes through several
octants in one step. The algorithm can be modified to
permit sharper turns (e.g. tests for b or a remaining
negative at the end of an octant change) if precautions
are taken to prevent looping, but a more detailed study
is beyond the scope of this paper.

5. Termination

The terminating condition is not specified in Fig. 5,
as this depends upon the particular application of the
algorithm. For example, the computer commands for
most digital displays require absolute values for the x
and y coordinates of each point to be brightened; in this
case, the algorithm must be extended to increment x
(or y in octants 2, 3, 6 or 7) after move 1, and both x

Table 2
OCTANT 1 2 3 4 5 6 7 8
k, 28 —2a 2a —28 28 —2a 2a —28
ks — ki 2y —2y —2y 2y 2y —2y —2y 2y
ky—k, 2a+4+2y —28—2y 28—2y 2042y 20+2y —28-—2y 2B—2y —2a-+42y
b W—B—y 2uta+y 2u—aty W+B—y —20—B—y —2utaty 2u—aty —20+p—y
a-+b 2u 20 v —2u —2u —2 —2v 2u
o B B o o B B o
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Digital plotting

Ty=5x

Fig. 11.—In this degenerate case, specifying two straight lines,
the algorithm changes to the other line after the intersection

and y after move 2, and these values of x and y will be
available for the terminating test.

In a purely incremental application, it may be possible
to use a single count in the inner loop as in the straight
line algorithm, if the terminating octant is known. If,
for example, the final value of x is known to occur in
octant 4, a test on x can be backed by an octant test to
resolve the ambiguity. The final value must give x for
octants 1, 4, 5 or 8, and y for octants 2, 3, 6 or 7.

As suggested in the Introduction, it might be worth-
while to implement the inner loop tests and additions in
special purpose hardware. The octant change proce-
dures are more complicated, so it may prove convenient
to call the main computer when b or a becomes negative.
This is reasonable for a high resolution display with a
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fine mesh, as the number of octant changes depends
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