Minimizing a function without calculating derivatives

By Willard 1. Zangwill*

In an important contribution Powell has suggested an approach for determining the unconstrained
minimum of a function of several variables, and determining it without calculating derivatives.
This paper studies his approach in some detail. It is first shown by counter-example that his basic
method for minimizing a quadratic function in a finite number of iterations contains an error. His
modification of his basic method is then simplified, and the simplification proven to converge for
strictly convex functions. Finally, we pose a new method not only which converges in a finite
number of iterations for a quadratic, but also for which theoretical convergence is established in

the strictly convex case.

1. Introduction

In a recent and important paper, Powell (1964) has
suggested a new procedure for calculating the minimum
of a function of several variables. The key advantage of
his approach is that it does not require explicit evaluation
of derivatives. In his paper he purports to have shown
that his method will converge in a finite number of
iterations to the minimum of a quadratic function.
Regrettably, there is a minor flaw in his theory and in
Section 2 of this paper a counter-example is posed. The
counter-example reveals that Powell’s method not only
does not converge to the minimum of a quadratic in a
finite number of iterations, but it will not converge in
any number of iterations. It seems that Powell himself
perceived some problems with his method as he reports
encountering difficulties when applying the method to a
function of five or more variables. The counter-example
in this paper requires only three variables. The precise
place at which the slip occurs in his proof is also pin-
pointed.

Because of the difficulties he perceived, he developed
a second method which, he suggests, might not con-
verge to the minimum of a quadratic in a finite number
of steps, but appears useful for more general functions.
In the third section of this paper his second method is
simplified, and the simplification proven to converge to
the minimum of a strictly convex function.

The fourth portion of this paper develops a new
method which has both the property that it will converge
to the minimum of a quadratic in a finite number of
steps, and the property that it will converge at least
theoretically, to the minimum of a strictly convex
function.

The notation of Powell’s paper will be used as much
as possible.

2. Non-convergence of Powell’s Method

Let f be a real-valued function on E”, Euclidean
n-space. Powell first suggested the following procedure
for determining a point p*, called optimal, which
minimizes f over E”,

The First Powell Procedure

Initially choose ¢, ..., £, to be the n coordinate
directions, and let p, be the starting point.

Step (i): For r=1,2,.. ., n calculate A, to mini-
mize f(pr—l + Arfr) and set Dr=Dr-1 +

Step (ii): Forr=1,2,...,n— 1replace ¢, by &, 4,
and replace £, by (p, — po).

Step (iii): Choose A to minimize f(p, + A{p, — po)),
replace p, by py + A(p, — po), and start the
next iteration from step (i).

Roughly speaking, calculate py, . . ., p, by successively
minimizing in the directions ¢, . . ., £,. Then define a
new set of directions by first deleting the old ¢,, letting
the new ¢, betheold &, r=1,...,n— 1, and finally
defining the new ¢, by &, = p, — po. The new p, is
found by minimizing from the old p, using the new ¢,
direction. The entire cycle from one p, to the next p,
comprises one iteration.

A counter-example will now be posed.

Let

Sy, n)=x—y+2+(—x+y+2+(x+y—2)=

It is easy to show that fis a strictly convex quadratic
function with a unique minimum at (x, y, z) = (0, 0, 0).
Choose as the initial point (4, 1, 1).

DIRECTION ALONG
WHICH TO MINIMIZE

POINT OBTAINED AFTER MINIMIZATION
IN THE GIVEN DIRECTION

Initial point 3, 1,3 =p,
x G LYH=p
y (JZ"» %’ '%) =P2
z &4 %) =ps

The new direction would be

2
b=p1—po= (30— 1 1D = (0,55 5).
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The new set of directions becomes
le(Oa 1,0):)/
§2:(0909 1):Z

-2 =2
&= (0’ 379 ) )
Observe that the x component of all three directions is
zero, so that the x component can never again change.
However, the x component of p; = (3,4,-%) is not
zero. The optimal point (0,0,0) can thus be never
achieved, even in the limit.

Although the above is a counter-example to the
original Powell procedure, he in an example (page 159
of his paper) modified his original procedure. The
modification appears first to optimize along each co-
ordinate direction before starting the usual procedure.
Thus a new set of directions is not formed until the
coordinate directions have been used twice: the first
time in a special initialization iteration, the second as
required by the method. The above function can also
be used as a counter-example to the modified procedure.
Start at the point (100, —1, 5 After minimization
first along the x direction and then along the y and z
directions the point (3, 1,%) is reached. We then
continue as in the previous counter-example.

To point out the place at which the error occurs in
Powell’s proof let f be quadratic so that

f(x) = xAx + bx + ¢, (1)

Two directions p and ¢ in E” are said

@

Powell states the following two theorems assuming the
requisite minima are achieved.

Theorem 1: If q,, . . ., q,,, m < n, are mutually con-
jugate directions, then the minimum of the quadratic
f(x) in the m-dimensional space containing x,, and the
directions ¢, . . ., ¢,, may be found by searching along
each of the directions once only.

Theorem 2: If x, is a minimum of the quadratic f(x)
in a space containing ¢, and x; is also a minimum in
such a space, then the direction (x; — x,) is conjugate
to q.

Finally, Powell employs the above two theorems to
prove that at the end of n iterations, the directions
£, ..., & are mutually conjugate, and hence by
Theorem 1 the minimum will have been found.

The difficulty with the above proof is in Theorem 1
because the ¢, . . ., ¢,, may not span an m-dimensional
space. For example, the zero vector is trivially conjugate
to any other vector. Regrettably, the Powell procedure
may generate directions which are linearly dependent,
and when it does, convergence may not occur.

We revise Theorem 1 to be:

Theorem 1-A: Theorem 1 with the additional hypo-
thesis that the ¢;,i = 1, . . ., m span the m-dimensional
space.

where now xeE™.
to be conjugate if
pAq = 0.
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3. A simplification of Powell’s Second Procedure

Observing that his first method might encounter
difficulties, Powell suggested a second procedure. The
key notion behind his second procedure was that it
might be unwise to replace a previous direction by a new
direction if in doing so the new set of directions became
linearly dependent. We pose a simplification of this

procedure and then give a convergence proof. In the
following ||.|| denotes Euclidean norm.
Powell’s Second Procedure (simpliﬁed)

Let the coordinate directions ¢}, £, ..., €, an

initial point pj, and a scalar e, 1 > e >0 be given.
Also assume the directions are normalized to unit
length so that ||¢!||=1,r=1,...,n Set 8'=1
Go to iteration k with k = 1.

Iteration k

(i) For r=1,2,...,n calculate A% to minimize

Spr_, + )\"fk) ‘and define ph=ph | + AEK
(ii) Define ok = ||p —p0|| and «f,,,l —(p” — Py )/ock

Calculate A%, to mlmmlze f(p,, n71§n+1)
and set p§ ™! = pk. | = P,, + )‘n R

(i) Let A* = max{)\"|r =1,
Case (a). If Ak§K/ak > e, let g+l = ¢k for
ro£s, &l = "i}, and set &K1 = Ak§K/ok,
Case (b). If Ak8K/ak < e,

let &+l = ¢k r=1,...,nandset 87! = &

Go to iteration k with k + 1 replacmg k.

It is assumed that all minima are achieved.

Theorem 3: 8k = det|&%, . . ., £X], the determinant of
the matrix whose columns are §l, s &R

PrOOF: For k = 1 as ¢! are the unit coordmate vectors
the result holds.

Assume the theorem for k. Since

pk—ps= E ASgl = okEl
det|¢h, ..., &k & L& ..., €
= (X/ok)det|&L, . . ., &4

= (X)) 8k,

In step (ii) if Case (a) occurs, the new set of directions
is the old set but with & | replacing £%. In this case
Sk+1 = Xe§k/ok.  If Case (b) holds then the new set of
directions is the same as the old set, so 8! = 8.

Q.E.D.

Corollary 3.1: Det|&%, . . ., €| > € for all k.

PRrOOF: Step (iii) ensures 8% > ¢ for all k. Q.E.D.

Step (iii) is thus seen to preserve the linear indepen-
dence of the directions at each iteration.

In the remainder of the paper the letter K, perhaps
with a superscript, will denote an infinite subsequence of
the integers. The notation K' C K means the infinite
subsequence K! is a subsequence of K. Wr1t1ng {P ek
means the subsequence formed by the pX for keK. The
subsequence {p¥*'},cx is the subsequence formed by
adding 1 to each keK. If a subsequence {p*};cx con-
verges to p®, we write p* — pZkeK or limyexpy = p;°.
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The next three theorems establish that Powell’s
Second Procedure (simplified) is well behaved in that any
convergent subsequence must converge to a point at
which the gradient of f, denoted Vf, is zero for f a
strictly convex function. Such a point will be the
optimal point.

Theorem 4: Given any infinite subsequence of the
integers K, there exists « K! C K such that

£k~ £* keK!, r=1,...,n
where ||é*|| =1, r=1,...,n. Furthermore, the
®,r=1,.. ., nare linearly independent.

PROOF: As the ¢* are normalized to unit length and
are thus contained in a compact set, there must be a
K! C K such that

Ek— £ keK’ where ||£7]| =1, r=1,2,...,n. (3)

By Corollary 3.1 det|éX, .. ., €| > € for all k. But

det|gk, .. ., EK| > det|ér, . . ., 7| keK! from equation
(3). Thus

det|§l°°, e f:c| > e,
and the £°,r =1, .. ., n are linearly independent.

Q.E.D.
The next theorem is stated in a more general frame-
work as it will also be useful in Section 4 of this paper.
Theorem 5: Let f be a continuously differentiable
strictly convex function, x* for all k¥ and x® be points in
En, m¥ for all k and 7™ be directions in E”, and let g%
for all k and B~ be scalars. Assume there is a procedure
which generates

SR < f(xH)

Given K, an infinite subsequence of the integers,
assume xk — x®, nk —>n* %0, and x¥*! - x® 1 keK.
Also for keK let

k=1,2,... @)

xkH 1= xk | Brpk

where B* is chosen to minimize f(x* 4 B7%).
Then

x®+l = x%,

PROOF: By (4) the sequence { f{(x*)}°_, is monotonic so
that

limy_, o f(x¥) = limye g f(xK) = lime g f(xFT1).
By continuity of f
limgex f(x9) = f(x) and  limgef(x* 1) = f(x* 1)
hence
ST = f(x*). )
Also observe as x¥ — x®, xk+1 — x®+land nk¥—>n* #0,
it must be that Bk — B°keK where 8~ is the limit.
By hypothesis f(x* 1) = f(x*k + B¥n*) < f(x* + Bn¥)
for any S fixed. Continuity of f ensures that
St = f(x® + B=n*) < f(x* + Bn~)

for any B. But strict convexity requires that g~ = 0.
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Hence as x* ! = x* 4+ B*n~

x*Tl= x>,

Q.E.D.

The convergence can now be established.
Theorem 6: Let f be a strictly convex continuously
differentiable function. Assume for keK that

pk—>p=, r=0,...n
Then p¢® = p° = ... = p;°, and py° is such that
Vilpg) = 0.

That is, p§ is optimal.
Proor: Via Theorem 4 there is a K! C K such that

& = &7 keK', |IE7]] = 1,
The hypotheses of Theorem 5 hold so that
ce=Dy (6

r=1,...,n

Py =pr=-
Now forr=1,...,n
S < f(ph_ + A¢x) for all A.
By continuity of fand equation (6)
Q) < f(pe + AEF), r=1,...,n andallX. (7

But Theorem 4 guarantees that the {°,r =1,.. ., nare
linearly independent and thus span the entire space.
Hence equation (7) could only hold if Vf(py) =0,
for otherwise there would be some s such that
VApS)IES # 0. Q.E.D.

The procedure is seen to converge for a strictly convex
continuously differentiable function.

4. A new procedure

A new procedure based upon Powell’s theorems will
now be developed. The procedure will, whenever it
encounters a quadratic with positive definite Hessian
matrix of second partial derivatives, converge in a finite
number of iterations. Theoretical convergence is also
established for a strictly convex continuously differen-
tiable function. No results are available, however, to
enable an assessment to be made of the rate of conver-
gence of this procedure relative to Powell’s Second
Procedure (or its simplification above) on general
practical problems.

The new procedure requires a slight departure from
Powell’s notation, although as much notational con-
sistency as possible will be maintained.

The procedure

Let ¢,,r =1, ..., n be the coordinate directions and
assume they are normalized to unit length.
Initialization step: Let an initial point p% and n
normalized directions !, r=1,...,n be given. Cal-
culate A0 to minimize f(p + A%¢!) and let p3. | = pd +
X0¢1 Set t = 1 and go to iteration k with k = 1.
Iteration k: pk1.¢%,r =1,.. ., nand ¢ are given.
Step (i): Find « to minimize f(p%;} + «c,). Update
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t by
f< t—}—.l if 1<t<n
1 if t=n

If o0, let p§=pkil + ac,, If o =0, repeat
step (i). Should step (i) be repeated » times in succession,
stop; the point p ] is optimal.

Step (ii): For r =1, ..., n calculate A* to minimize

S (Pf—l + )\1:51:)
PP =rpi + XE
Let *i1 = (o — Pk DIl Pk — PEl

Determine A%, , to minimize f(p% + Ak, &5 )

ok kK ¢k
Pn+1 =Py + A1t
k+1 ¢k _
rl=¢ r=1,..,n

Go to iteration k with k + 1 replacing k.

All minima are assumed to exist.

Some discussion of the procedure may be in order.
Step (i) proceeds cyclically through the coordinate
directions. That is, each time we return to step (i) we
use the next coordinate direction, repeating c, after
using c¢,. Every n 4 1 times step (i) is employed the
same coordinate direction is employed. The ¢ indexes
the coordinate direction to be used. If step (i) is
repeated n times in succession, then all n coordinate
directions have been attempted and no change in the
point has occurred. Such a situation can only occur if
at that point the gradient of the function fis zero. As
we assume f strictly convex and continuously differen-
tiable, that point is optimal.

In general step (i) is repeated until a new point is
generated. In step (ii) the procedure continues as in the
earlier procedures. It is important to observe that after
at most # iterations, all coordinate directions have been
used.

The quadratic case follows Powell’s argument but
ensures that Theorem 1-A holds instead of Theorem 1.

Theorem 7 (Quadratic Convergence): Let f be qua-
dratic with a positive definite Hessian 4. Then the
procedure stops at an optimal point in step (i) of
iteration k where k < n

PrOOF: Assume at the beginning of iteration k,
k< n—1, that the direction &_, ,, &_, . ... &k,
are mutually conjugate and linearly independent. If the
procedure does not stop in step (i) of iteration k then
PY1 = pk and as A is positive definite f(pX)<f(pii)).
By I}Izonotommty of the procedure f(p¥) < fi (p’g) <f(pri}
so that

and define

and set
Define

pn+17épn and é‘:n-i—l

At iteration k — 1, because f, Ii= f" the last k
directions to be employed were & ., ..., £ Since
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these directions are linearly independent the point p% 1}
i a minimum in the k-dimensional space containing
&k, b1 & via Theorem 1-A. Similarly the
point p¥ is such a point. Thus from Theorem 2 &%,
is mutually conjugate to £%_, ., ..., &. Furthermore,
E it &K 5, are all non-zero hence, as A is
positive definite, they are linearly independent. Thus

bt - - - E6F1 are linearly independent and
mutually conjugate.

Clearly the same argument holds for k = 1 establish-
ing the induction.

Thus if the procedure has not stopped by the beginning
of iteration n, we have generated n mutually conjugate
and linearly independent directions. In step (ii) of
iteration n — 1 we have optimized over these # directions,
so that the point p?7! must be optimal. The procedure
will then stop in step (i) of iteration a. Q.E.D.

The convergence of the procedure for f strictly convex
will now be established. Since finite convergence has
been discussed in reference to step (i) only the situation
in which the procedure generates an infinite sequence of
points will be considered. The proof will be brief as it
follows the proof of Theorem 6 closely.

Theorem 8: Let f be strictly convex and continuously
differentiable. Assume all points p*, r =0,...,n + 1
for all k are contained in a compact set. Let p*—>p® keK
for some K and fixed s. Then p is optimal.

Proor: Since all points are in a compact set there
must be a K! C K such that for keK!

Ml —>p2t keK', i= —s,—s+1,...,—1,0, +1,

.on+1—s and j=0,...,n—1.

Here we are considering all points generated on itera-
tionsk,k+1,...,k +n—1for kek.

As the directions are normalized, by extracting
subsequences if necessary, Theorem 5 ensures that

pE =p2H, i=— wn+1—s, j=0,..,n—1.

But during any successive n iterations all #» coordinate
directions must have been used. Again using sub-
sequences if necessary, and calling upon the ideas
leading to equation (7) in Theorem 6, we obtain

) < f(p? + Bec,) forall Band r=1,...,n

But as the c, are the coordinate directions, p> must be
optimal. Q.E.D.
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