Algorithms Supplement

Previously published algorithms

The following Algorithms have been published in the Com-
munications of the Association for Computing Machinery
during the period May-June 1967.

301 AIRY FUNCTION

Evaluates the real Airy functions and their derivatives by
solution of the differential equation y” = xy.

302 TRANSPOSE VECTOR STORED ARRAY

Performs an in-situ transposition of an m X n array
A [l : m, 1 : n] stored by rows in the vector a[l : m X n].

303 AN ADAPTIVE QUADRATURE PROCEDURE
WITH RANDOM PANEL SIZES

Approximates the quadrature of the function fx on the
interval a < x < b to an estimated accuracy by sampling the
function fx at appropriate points until the estimated error is
less than the estimated accuracy.

304 NORMAL CURVE INTEGRAL
Calculates the tail area of the standardized normal curve.

The following papers have been published in Nordisk
Tidskrift for Informationsbehandling in the January 1967 issue.

(a) COMPUTER CARTOGRAPHY-POINT-IN-
POLYGON PROGRAMS.

(b)) REMARKS ON “GARBAGE COLLECTION” USING
A TWO-LEVEL STORAGE.

Algorithms

Author’s Note on Algerithms 22, 23, 24

In a recent paper, T. A. J. Nicholson (1966) describes a
fast algorithm for finding the shortest route between two
points in a connected network and compares this with other
methods. Of the three procedures given below, minpath
implements Nicholson’s algorithm and provides one and
only one solution for a given pair of nodes, whereas netpaths
and shortpath are associated procedures which together may
be used to find the shortest path between any specified node
and all others. The original source of netpaths and shortpath
is not known to the author though the essential method is
that described in Wilson.

References

NicHoLsoN, T. A. J. (1966). Finding the shortest route
between two points in a network, The Computer Journal,
Vol. 9, pp. 275-280.

WiLsoN, R. C. Example Problem 61, The Use of Computers
in Industrial Engineering Education. Ann Arbor: College
of Engineering, The University of Michigan.

306

Algorithm 22

SHORTEST PATH BETWEEN START NODE AND END
NODE OF A NETWORK

J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

integer procedure minpath (d, n, sn, en, route); value n, sn, en;
integer n, sn, en; integer array d, route;

comment yields the value of the shortest path between start
node sn and end node en of a connected n-node network having
up to n X (n—1) directed links. d[l : n, 1 : n] is the cost, or
distance, matrix with elements d[i,j] containing the cost
(distance) of the ij directed link between nodes i and j.

The diagonal elements of d and all d[p, q] elements associated
with pq directed open links between nodes p and q should
contain M = n X max (d[i,j]) i.e. n times the maximum con-
nected link value.

As this algorithm requires the diagonal elements to be zero the
procedure clears these after entry and restores them again
before exit.

The array route[l : n] contains, in its first m positions, the
numbers of the m(< n) nodes in the connected chain forming the
shortest path. The remaining elements of route are set to zero;

begin integer i, j, k, gp, fp, si, ti, mins, mint, sum, x, y, max,
dmi, m, min, imin;
integer array p, q, s, t, f, g[1 : nl;
procedure smin;
comment finds mins and stores in stack f[1 : fp] all values
of m such that s[m] = mins (s[i] > x);
begin si := s[i];
if si > x then
begin if si << mins then
begin fp := 1; mins
fipl =i
end
else
if si = mins then
begin fp := fp + 1;
flfpl =i
end
end
end smin;
procedure tmin;
comment finds mint and stores in stack g[1 : gp] all values
of m such that t{m] = mint (1[i] > y);
begin i := 1[i];
if 7i > y then
begin if /i << mint then
begin gp := 1; mint := ti;
glgpl =i
end
else
if ti = mint then
begin gp 1= gp + 1;
glegpl =i
end
end
end rmin;

= si;

20z Iudy 61 U0 1sanB AQ G81L¥6H/90E/E/0 1 /BI0IME/|UlLOS WO dNO" OIS PEDE//:SARY WOl PEPEOIUMOC

Algorithms Supplement

comment pick up max and initialize x, y, s, p, q, t and the
diagonal of d;
max :=d[l1,1]; x :=y :=0;
for i := 1 step 1 until » do
begin d[i, i] := 0;
sli] := dlsn, il; t[i] := d[i, en];
plil := sn; qli] := en
end initialization;
comment find the initial values of mins and mint with
corresponding m values for both s[1 : n] and {1 : n};
fp :=gp := 0; mint := mins := max;

for i := 1 step 1 until n do
begin smin;

tmin
end;

comment the algorithm proper begins;
iterate: if mins < mint then
begin comment reset s[1 : n];
X = mins;
for fp := fp step —1 until 1 do
begin m := f[fpl;
for i := 1 step 1 until » do
begin dmi := d[m, i];
sum = mins + dmi,
if s[i] > sum then
begin s[i] := sum;
plil :=m
end
end
end;
comment find new mins and m values for s[1 : n];
mins := max; fp := 0;
for i := 1 step 1 until » do smin

end

else

begin comment reset 1[1 : n];
Yy := mint;

for gp := gp step —1 until 1 do
begin m := g[gp];
for i := 1 step 1 until » do
begin dmi := d[i, m];
sum := mint + dmi,
if ¢[i] > sum then
begin t[i] := sum;
qlil :=m
end
end
end;
comment find new mint and m values for t[1 : n];
mint := max; gp := 0;
for i := 1 step 1 until n do tmin
end;
comment compute convergence criterion;
min := max + max,
for i := 1 step 1 until » do
begin sum := s[i] + t[il;
if sum << min then
begin min := sum;
imin 1= i
end
end;
if min > mins + mint then goto iterate;
comment the two ends of one shortest route (there may be
others equally short) meet in node imin. Now to unravel the
route,

G 307

j := route[n] := imin;,

if imin = sn then

begink :=n — 1;
for i := p[j] while i = sn do
begin j := route[k] := i,

k:=k—1

end

end

else

k = n;

route[1] :=sn;j:=k + 1; k := 2;

for j := j step 1 until n do

begin route[k] := route[j];
k:=k+1

end;

if imin en then

begin j := imin;
for i := q[j] while i %~ en do
begin j := routelk] := i,

k:=k+1
end;
routelk] := en

end;
for k := k + 1 step 1 until n do route[k] := 0;
comment restore the diagonal of d;

for i := 1 step 1 until » do d[i, i] := max;
minpath := s{imin] + t{imin]
end minpath

Algorithm 23

SHORTEST PATH BETWEEN START NODE AND ALL
OTHER NODES OF A NETWORK

J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

procedure netpaths (d, n, sn, precede, mincost); value n, sn;
integer array d, precede, mincost; integer n, sn;

comment yields in mincost[i] of mincost[1 : n] the value of
the shortest path from node sn to all other nodes i,i = 1,2...n,
in a connected n-node network having up to n X (n — 1)
directed links. d[l1 : n, 1 : n] is the cost, or distance, matrix
with elements d[i,j] containing the cost (distance) of the ij
directed link between nodes i andj. The diagonal elements and
elements d[p, q] associated with pq directed open links between
nodes p and q should contain M=n X max (d[i, j]) i.e. n times
the maximum connected link value.

The array precedell : n)] is a chained list of node numbers
such that precede[i] contains the node number preceding node i
on the shortest route. This array may subsequently be used
by procedure shortpath to evaluate the list of nodes on the
shortest route from sn to any specified end node

begin integer i, j, mini, jcost, M ;
integer array scan(1 : n];
M :=d[1,1];
for i := 1 step 1 until n do
begin scan[i] := precede[i] :=0;
mincost [i] .= M

end;
mincost[sn] := 0; scan[sn] := 1;
iterate: for i := 1 step 1 until n do

if scan[i] # O then

20z Iudy 61 U0 1sanB AQ G81L¥6H/90E/E/0 1 /BI0IME/|UlLOS WO dNO" OIS PEDE//:SARY WOl PEPEOIUMOC

Algorithms Supplement

begin mini := mincost[il;
for j := 1 step 1 until » do
begin jcost := d[i, j] + mini;
if jcost << mincost[j] then
begin mincost[j] := jcost;
scan[j] :=1;
precede[jl := i
end
end;
scan[i] := 0; goto iterate
end
end netpaths

Algorithm 24

THE LIST OF NODES ON THE SHORTEST PATH
FROM START NODE TO END NODE OF A NETWORK

J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

procedure shortpath (n, sn, en, precede, route); value n, sn, en;
integer n, sn, en; integer array precede, route;
comment evaluates in the first m(<n) positions of route[l : n]
the list of nodes on the shortest path from start node sn to end
node en in an n-node connected network. The remaining
elements of route are set to zero.
Information necessary for determining the path must be
supplied in precede[l : n] in the form obtained by previous
use of procedure netpaths,
begin integer i, j, k;

j = route[n] := en; k :=n — 1;

for i := precede[j] while i = sn do

begin j : = route[k] := i;

k:=k—1

end;

route[1] :=sn;j: =k +1;k :=2;

for j := j step 1 until » do

begin route[k] := route[j];

k:=k+1

end;

for j := k step 1 until n do route[k] := 0;
end shortpath

Author’s Note on Algorithms 25, 26, 27

Some justification is surely needed for the publication of yet
another sorting procedure using the method of partition on
the rank of selected elements. Hibbard (1963) describes the
essential process in his Program B and notes its similarity to
Hoare’s (1961) Quicksort in which the method is imple-
mented as a recursive ALGOL procedure.

With the publication of the non-recursive implementation
Quickersort (Scowen, 1965) it might be supposed that the
final word has been said. However, the efficiency of an
ALGOL procedure is a function of both the method and its
implementation and partsort, given below, appears on test
to be not less than 159 faster than Quickersort. This has
been achieved largely by minimizing array access.

Other tests (Blair, 1965) show the general superiority of
this method for internal sorting and it has been chosen as the
basis for the procedure keysort, also given below.

An understanding of the operation of keysort is more
easily had if details of the procedure on which it is based are
available. This offers a further excuse for the publication of
partsort.

308

[In procedures partsort and keysort, for sorting small
numbers of elements and at the expense of extra storage,
increased efficiency may be had by avoiding one block entry
as follows :—

delete lines 4 and 5 of the procedure body,
i.e., begin comment — — —
———dok:=k +1
alter line 7 to read integer array f,g [1 : size]
one line from end: delete end
—Referee];

References

HisearD, T. N. (1963). An Empirical Study of Minimal
Storage Sorting, Communications of the Association for
Computing Machinery, Vol. 6, p. 207.

Hoarg, C. A. R. (1961). Algorithm 63, Partition and
Algorithm 64, Quicksort, Communications of the Asso-
ciation for Computing Machinery, Vol. 4, pp. 321-2.

ScoweN, R. S. (1965). Algorithm 271, Quickersort, Com-
munications of the Association for Computing Machinery,
Vol. 8, p. 669.

BLAIR, C. R. (1965). Certification of Algorithm 271, Com-
munications of the Association for Computing Machinery,
Vol. 9, p. 354.

Algorithm 25

SORT A SECTION OF THE ELEMENTS OF AN
ARRAY BY DETERMINING THE RANK OF EACH
ELEMENT

J. Boothroyd,

Hydro-University Computing Centre,

University of Tasmania.

procedure partsort (a, m, n); value m, n; integer m, n; array a;
comment sorts the elements a[m] through a[n], m <n, of
array a by determining the rank of each element. The rank
of an element d, say, is that index position such that no element
of lower index has a value greater than d, and no element of
higher index has a value less than d. Once the rank of d is
established and d is placed in its ranking position it partitions
the set into three subsets, itself and two others on either side
each of which may be similarly treated in turn. Choice of d
is arbitrary but affects the efficiency of the algorithm according
to the initial ordering of the unsorted elements. This procedure
chooses the first element of each subset and indicates how, by
a trivial change, the approximately centre element may be
chosen. Other implementations choose the last element or
some random element.

The arrays f, g are stacks, with stack pointer k (in the inner
block). The lower and upper bounds of subsets as yet unsorted
are stored in f and g respectively. The bounds of f and g are
computed in the outer block ;

begin integer size, i, k;
size :=n—m + 1;
if size > 2 then
begin comment compute size of address stacks f, g;
k := 0;
fori:=1,i + iwhilei <sizedo k := k +1;
begin integer j, p; real d, aj, ai;
integer array f, g[1 : k];
k:=1;

20z Iudy 61 U0 1sanB AQ G81L¥6H/90E/E/0 1 /BI0IME/|UlLOS WO dNO" OIS PEDE//:SARY WOl PEPEOIUMOC

Algorithms Supplement

comment deal with subsets of order 2 separately;
loop: if size = 2 then
begin ai := a[m]; aj := aln];
if ai > aj then
begin a[m] := aj;
aln] := ai
end;
comment extract the bounds of the next subset;
next: k := k — 1; if k = 0 then goto exit;
m := flkl; n := g[k]
end
else
begin i := m;j := n;
comment choose the first element as d and determine
its rank. To select the approximately centre element
as d replace the next statement by the statements:—
pi=({+j)+2 d:=alp] alp]:=alil;
d := alil;
L: for aj := a[j] while i = j do
begin comment j indexes a high to low scan;
if aj < d then
begin ali] :=aj;i: =i+ 1;
for ai := a[i] while i j do
begin comment i indexes a low to high scan;
if ai > d then
begin a[j] ;= ai;j:=j—1;
goto L
end;
it=i+1
end;
goto partition
end;
ji=j—1
end;
comment i is the rank of d and ali] is vacant so;
partition: ali] := d,
ji=i—m;p:=n—1i
comment choose the smaller subset for treatment,
store the bounds of the larger subset unless the
smaller subset is of order one in which case deal with
the larger subset immediately
if j < p then
begin if j > 1 then
begin f[k] := i + 1; g[k] := n;
n:=i—1;k:=k+1
end
else
m:=i+1
end
else
begin if p > 1 then
begin f[k] := m; glk] := i — 1;
m:=i+1;k:=k+1
end
else
n:=i—1
end
end;
size :=n—m+ 1;
goto if size << 2 then
next
else
loop;
exit:

G*

end
end
end partsort

Algorithm 26

ORDER THE SUBSCRIPTS OF AN ARRAY SECTION
ACCORDING TO THE MAGNITUDES OF THE
ELEMENTS

J. Boothroyd,

Hydro-University Computing Centre,

University of Tasmania.

procedure keysort (a, r, m, n); value m, n; integer m, n; array a;
integer array r;

comment effects a re-ordering of the integers m through n in
r[m] through r[n] so that alr[m]] < alrim+111< ... <
alr[nl], i.e. the elements of r[m : n] are re-ordered to indicate
an ordering by magnitude of the elements in a[m :n)]. The
bounds of a and r may, of course, extend beyond m and n on
either side. This procedure is essentially the same as pro-
cedure partsort (Algorithm 25) in which indirect addressing is
used to effect a re-ordering of the ranking index vector r rather
than a re-ordering of a itself. This procedure is useful in cases
where several arrays a, b, c . . . are to be sorted on the magnitude
of elements in one of these, the key array. The resulting rank
index vector may be used subsequently by procedure permvector
(Algorithm 27) to re-order all these arrays if necessary.

Other uses of r for indirect addressing purposes are obvious;

begin integer size, i, k;
size :=n—m + 1;
if size > 2 then
begin comment compute size of address arrays;
k:=0;
fori:=1,i+ iwhilei <sizedok := k + 1;
begin integer j, p, ri, rj, rm, rn; real d;
integer array f, g[1 : k];
comment initialize rank index vector;
for i := m step 1 until n do r[i] := i;
k:=1;
comment deal with subsets of order 2 separately;
loop: if size = 2 then
begin rm := r[m]; rn := r[n];
if a[rm] > a[rn] then
begin r[m] := rn;
rln] :=rm
end;
comment extract the bounds of the next subset;
next: k := k — 1; if k = 0 then goto exiz;
m := flkl; n := glk]
end
else
begin i := m;j := n;
comment choose the first element as d and determine
its rank. To select the approximately centre element
as d replace the next statement by the statements:—
pi=0+))+2 rm:=rlp] rlp]l:= riml;
rm := r[m]; d := a[rm];
L: for rj := r[j] while i = j do
begin comment j indexes a high to low scan;
if a[rj] < d then
begin r[i] := rj;i:= i+ 1;
for ri := r[i] while i 5= j do
begin comment i indexes a low to high scan;
if a[ri] > d then

20z Iudy 61 U0 1sanB AG G81L¥6H/90E/E/0 1 /BI0IME/|UlLOS WO dNO" OIS PEDE//:SARY WOl PAPEOjUMOC

Algorithms Supplement

begin r[j] :=ri;j:=j—1;
goto L
end;
it=i+1
end;
goto partition
end;
ji=j—1
end;
comment i is the (indirect addressed) rank of d,
referenced by rm and r[i] is vacant so;
partition: r[i] := rm;
ji=i—m;p:=n—Ii,
comment choose the smaller subset for treatment,
store the bounds of the larger subset unless the smaller
subset is of order one in which case deal with the
larger subset immediately ;
if j < p then
begin if j > 1 then
begin f[k] := i + 1; glk] := n;
ni=i—1;k:=k+1
end
else
m:=1i+1
end
else
begin if p > 1 then
begin f[k] := m; glk]l := i —1;
m=i+1;k:=k+1
end
else
n:=1i—1
end
end;
size :=n—m + 1;
goto if size << 2 then
next
else
loop;
exit:
end
end
end keysort

Algorithm 27
REARRANGE THE ELEMENTS OF AN ARRAY SEC-
TION ACCORDING TO A PERMUTATION OF THE
SUBSCRIPTS
J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

procedure permvector (a, r, m, n); value m, n;
integer m, n; array a; integer array r;
comment rearranges the elements of the sector a[m] through
a[n], m < n, of array a so that alil := alr[il],
i=m,m+1,m+2,...,n The index vector r is intact on
exit;
begin integer i, k, m1; real w;

ml:=m+1;

for i := nstep — 1 until m1 do

begin k := rli];

L: if k + i then
begin if k > i then
begin k := r[k];
goto L
end;
w := alil; a[i] := alk]; alk] := w
end
end
end permvector

Authors’ Note on Algorithms 28, 29, 30.

Combinatorial problems involving permutations not
unreasonably take a long time (10! ~ 3:6¢6, 20! ~ 2:4,418).
It is essential therefore that procedures for generating all
permutations of n marks should be as efficient as possible.

The efficiency of an ALGOL procedure depends on the
method and its implementation. Three procedures are given
below which implement known methods in new ways, with
considerably improved performance.

Algorithm 28, NEXTPERM, generates distinct permutations
in lexicographic order and uses the same method as that of
Mok-Kong Shen (1963).

Algorithm 29, vectorperm, generates permutations in
non-lexicographic order, is suitable for » > 1 and implements
a method described by Mark B. Wells (1961). This is an
inherently efficient process which, by the nature of the
sequence of transpositions used, is particularly adapted to
efficient implementation as shown in Algorithm 30, suitable
only for n> 5. A further 14% improvement may be had
by implementing Algorithm 30 as a parameterless procedure
and by making extensive use of global variables and letting
the control program handle any necessary initializations.

The techniques of Algorithm 30 are also applicable to
NEXTPERM and result in a 16 % reduction in running time.
These changes are however left as an exercise and challenge
to the interested user.

Algorithms 29 and 30 are equivalent procedures for n> 5,
have been given the same identifier and identical parameter
lists. Each has run under the control of the same driver
program with identical results.

Running times, in seconds on an ELLIOTT 503, are given
below for each of the following procedures:—

(a) Algorithm 30, below
(b) Algorithm 28, below
(c) Algorithm 29, below
(d) ACM202 (Mok-Kong Shen, 1963)
(e) ACMS86 (Peck and Schrack, 1962)
n=6 n=7 n=8
(@) 1-0 6:0 44-2
) 1-6 10-2 81-0
(c)2:0 12-2 954
d3-0 210 167
(e) 3-6 23-0 180

References

SHEN, Mok-KoNG (1963). Algorithm 202, Generation of
Permutations in Lexicographic Order, Communications of
the Association for Computing Machinery, Vol. 6, p. 517.

WELLS, MARK B. (1961). Generation of Permutations by
Transposition, Mathematics of Computation, Vol 15, p. 192.

Peck, J. E. L., and ScHRACK, G. F. (1962). Algorithm 86,
Permute, Communications of the Association for Computing
Machinery, Vol. 5, p. 208.

20z Iudy 61 U0 1sanB AQ G81L¥6H/90E/E/0 1 /BI0IME/|UlLOS WO dNO" OIS PEDE//:SARY WOl PEPEOIUMOC

Algorithms Supplement

Algorithm 28

PERMUTATIONS OF THE ELEMENTS OF A VECTOR
IN LEXICOGRAPHIC ORDER

J. P. N. Phillips,
Department of Psychology,
University of Hull.

Boolean procedure NEXTPERM (PERM, A, B);
value A, B; integer 4, B; integer array PERM;
comment NEXTPERM takes as data the integer array seg-
ment PERM[A] to PERM[B). If A> B, or if PERM[A] to
PERM](B] (not all, or even any, of which need be distinct) are
in non-increasing order, i.e. if there is no next permutation in
lexical order, then NEXTPERM becomes false and the seg-
ment is left unaltered, otherwise PERM[A] to PERMIB] are
rearranged into the next lexical permutation and NEXTPERM
becomes true;
begin integer i, j, k, pi, pj, pk, pb;
NEXTPERM := true;j:= B — 1;
if j < A then
begin NEXTPERM := false;
goto exit
end;
pb := PERMIB]; pj .= PERM][j];
if pj < pb then
begin PERM(B] := pj;
PERM][j] := pb
end
else
begini := B — 2;
if i < A then
begin NEXTPERM := false;
goto exit
end;
pi := PERM[i];
if pi < pj then
begin if pb > pi then
begin PERM[i] := pb;
PERM[j] := pi; PERMIB] := pj
end
else
begin PERM([i] := pj;
PERM][j] := pb; PERMIB] := pi
end
end
else
begin for j := B — 3 step — 1 until 4 do
begin pj := PERM]1;
if pj << pi then goto swap;
ii=j;pi:=pf
end;
NEXTPERM := false
end;
goto exit;
swap: k := B;
for pk := PERMT[k] while pk < pjdo k: =k — 1;
PERMTk] := pj; PERM[j] := pk;
k:=(B+j)+2;j:=B,;
for i := i step 1 until k do
begin pi := PERM][i]; PERM[i] := PERM[j];
PERM([j] :=pi;j:=j—1
end
end;

311

exit:
end NEXTPERM

Acknowledgement: Thanks are due to the referee for useful
comment and helpful suggestions.

Algorithm 29
PERMUTATION OF THE ELEMENTS OF A VECTOR

J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

procedure vectorperm (m, d, n, mode, endperm); value n, mode;
integer n, mode; array m; integer array d; label endperm;
comment generates, at each entry, one new permutation of the
n marks m[1}, . . ., m[n] in m[1 : n]. The permutation is con-
trolled by a variable radix counter d[2 : n] with digit positions
d[2], d[3], . . . , d[n] in which the subscript value denotes the
radix. Starting with d = (0,0, ...,0) one is added to the
counter at each entry to the procedure. One and only one
digit position increases in value and all digit positions below
this are reset to zero. Denoting by k that digit position which
increases the transposition rules are:—

(k odd) or (k even and d[k] < 2) exchange mlk], m[k —1]

k evenand 2 < dk] < k exchange mlk], m[k — d[k]].
A call of vectorperm with mode = 1 initializes the counter
preparatory to further calls with mode = 2. After n factorial
permutations have been generated d resets to zero and the
procedure exits to endperm.

The essential algorithm is that of Mark B. Wells (1961)
though the transposition rules given above are much simplified
compared with those in (Mark B. Wells, 1961);
begin integer k, j, kless1, dk; real temp;

switch s := set, run;

goto s[mode];
set: for k := 2 step 1 until n do d[k] := O; goto exit;

run:j = — 1; klessl :=1;
for k := 2 step 1 until » do
begin dk := d[k];
if dk + kless1 then goto swap;
dlk] :=0;j:= —J;
klessl1 =k
end;

goto endperm;
swap: dk := d[k] := dk + 1;

if j % 1 A dk > 2 then klessl := k — dk;

temp := mlk]; mlk] := mlkless1]; mlkless1] := temp;
exit:
end vectorperm

Algorithm 30

FAST PERMUTATION OF THE ELEMENTS OF A
VECTOR

J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

procedure vectorperm (m, d, n, mode, endperm); value n, mode;
integer n, mode; integer array d; array m; label endperm;

comment a highly efficient implementation of Algorithm 29,
suitable only for n> 5. The improvement in efficiency results
from capitalizing on the fact that 23 successive entries to the

20z Iudy 61 U0 1sanB AQ G81L¥6H/90E/E/0 1 /BI0IME/|UlLOS WO dNO" OIS PEDE//:SARY WOl PEPEOIUMOC

Algorithms Supplement

procedure affect two elements in the subset m[1], . . ., m[4], and goto exit;
array access is minimized by using, on one entry, elements s4: mk := m4; m4d := m[4] := ml; ml := m[1] := mk;
accessed in the immediately preceding entry. The parameters goto exit;
are the same as those of Algorithm 29 though the bounds of d s5:j:=1; klessl := 4;i:=0;
may be changed to d[5 : nl; for k := 5 step 1 until n do
begin integer j, k, kless1, dk ; real mk; begin dk := d[k];
own real ml, m2, m3, m4; own integer i; if dk = kless1 then goto swap;
switch s := s1, 52, 51, 52, 51, s3, s1, 52, 51, 52, s1, 53, klessl :=k; dlk] :==0;j :=—
sl, 52, 51, 52, 51, s4, s1, 52, s1, 52, s1, s5, set, run; end;
switch ss 1= ss51, 552, 553, 554; goto endperm;
goto s[24 + mode]; swap: dk ;= d[k] :=dk + 1;
set: for k := 5 step 1 until n do d[k] := O; if j %=1 A dk > 2 then klessl := k — dk;
ml 1= m[1]; m2 := m[2]; m3 := m[3]; m4 := m[4]; mk := mlk]; m[k] := mlkless1]; mlkless1] := mk;
i := 0; goto exit; goto if kless1 < 4 then ss[kless1] else exit;
run: i ;=i 4 1; goto s[il; ssl: ml := mk; goto exit;
sl: mk :=ml; ml := m[1] := m2; m2 := m[2] := mk; ss2: m2 := mk; goto exit;
goto exit; ss3: m3 := mk; goto exit;
52 mk 1= m2; m2 := m[2] := m3;m3 := m[3] := mk; ss4: m4d := mk;
goto exit; exit:
§3: mk := m3; m3 := m[3] := md4; m4 := m[4] := mk; end vectorperm

Contributions to the Algorithms Supplement should be sent to

P. Hammersley
University Mathematical Laboratory
Corn Exchange Street
Cambridge

Published Quarterly by
The British Computer Society, 23 Dorset Square, LONDON, N.W.1, England.

The Computer Journal is registered at Stationers’ Hall, London (certificate No. 24690, June 1966). The
contents may not be reproduced, either wholly or in part, without permission.

Subscription price per volume £4 10s. (U.S. $12.60). Single Copies 25s. (U.S. $3.50)

All inquiries should be sent to the Secretary at the above address.

EDITORIAL BOARD

P. G. Barnes R. G. Dowse I. H. Gould T. H. O’Beirne
D. V. Blake L. Fox J. G. Grover E. %{Page

: . P. Hammersley R. M. Paine
M. Bridger H. W Gearing D. W. Hooper D. Rogers
R. A. Brooker P. Giles T. Kilburn P. A. Samet
E. C. Clear Hill S. Gill J. G. W. Lewarne P. A. Spooner
L. R. Crawley J. A. Goldsmith J. C. P. Miller K. H. Treweek
G. M. Davis E. T. Goodwin E. N. Mutch H. P. Voysey
A. S. Douglas T. F. Goodwin R. M. Needham P. H. Walker

F. Yates (Chairman)

Communications: Papers submitted for publication should be sent to E. N. Mutch, The University Mathematical Laboratory, Corn
Exchange Street, Cambridge. Intending authors should first apply for Notes on the Submission of Papers, as the onus of preparing
papers in a form suitable for sending to press lies in the first place with the authors.

Opinions expressed in The Computer Journal are those of the authors and do not necessarily represent the views
of The British Computer Society or the organizations by which the authors are employed.

© The British Computer Society, 1967.
312

20z Iudy 61 U0 1sanB AQ G81L¥6H/90E/E/0 1 /BI0IME/|UlLOS WO dNO" OIS PEDE//:SARY WOl PEPEOIUMOC

