Discussion and Correspondence
An established U.K. software development
By E. L. Willey*

The PL/1 symposium at NPL

The excellent and stimulating symposium on PL/1 (this
Journal Vol 10, p. 211) served to underline that most of the
old problems and pitfalls remain with us, in the provision
and use of any comprehensive high-level language.

It was, however, disappointing that the symposium was
not longer, so that more time could be devoted to a discussion
of the language as distinct from its implementation. Not
unnaturally, in the time available users dwelt on the latter,
since any realistic user with target dates to meet must be
primarily concerned with the current state of the language
and its compiler. As PL/1 will obviously aspire to be a
candidate for international standardization one would have
thought that the language itself should have been discussed
in more depth.

History repeats itself

Delays and teething troubles have been the predominant
feature of language implementation to date. It was therefore
surprising to hear hardened users express astonishment that
the PL/1 implementors should fail to meet targets, should
find it expedient to remove facilities from the first implementa-
tion, and that object programs should require storage in
excess of that anticipated. It is obvious that history is
repeating itself, notwithstanding the vast resources behind
PL/1.

What is more disappointing is that those in this country
who are responsible for the evaluation, provision and selection
of software should overlook a number of U.K. achievements
which have either passed or avoided the difficulties apparently
now being encountered by PL/1 and its users, and which now
serve to provide very adequate working tools.

Seven-years development

I have particularly in mind two products of which I have
first-hand experience as a user: Orion and Nebula. It is
almost seven years since Messrs. Ferranti Ltd. detailed plans
for a time-sharing computer, the Orion, and a “programming
language for data processing”—Nebula. Indeed a des-
cription of the language together with a small program were
published in this journal as long ago as 1961 (Braunholtz
et al., 1961). Whilst no one would claim that the ideas
incorporated in the language remain unique, they combine
to provide a software system which after the passage of seven
years is still in the forefront of the field. Meanwhile the
Ferranti Computer Department was taken over by I.C.T.

At the moment, the language has, unfortunately, only been
implemented on one type of machine—Orion. Three factors,
however, make it worthwhile for those concerned with
languages to investigate it:

First, the language continues to be extended and improved,
and close co-operation between the compiler team and
users is maintained to this end.

Second, while Nebula is at present designed to meet

* The Prudential Assurance Co. Ltd., Holborn Bars, London, E.C.1.

commercial requirements, it can, I understand, be extended
to meet the needs of non-commercial users.

Third, Nebula was written in an intermediate language
(Fraser et al., 1966) specifically with a view to facilitating
implementation on other machines.

In view of the last point, and the fact that this approach
was decided on some seven years ago, also that other soft-
ware groups have been using similar techniques for some
time (e.g. Computer Analysts and Programmers intermediate
language PORDS), it seems strange that the Ministry of
Technology should recently have given a grant in another
quarter for the development of yet another intermediate
language.

Indeed, one is most concerned that those responsible for
the co-ordination and encouragement of the national soft-
ware effort, such as the Ministry of Technology and the
National Computing Centre, should not overlook the very
substantial achievements that have been made in this country,
albeit without much blowing of trumpets, as exampled by
the Nebula language and time-sharing facilities on Orion.

It is to be hoped that these bodies are finding out what
has been done to date, what potentialities exist for the
further development of present achievements, and what is
currently being developed. This will then ensure that
valuable developments are not lost to the advance of the
art. Who knows, we might ourselves have already produced
a language that is as good as any other contender as the
“standard language”.

Facilities already available

The remainder of this note is directed to those who are
interested in knowing something of the facilities provided by
Orion and Nebula.

Time sharing has been working on Orion since late 1962.
This is not just time sharing of peripheral activities but of
main programs. The approach adopted and the facilities
provided have not been outmoded by the passage of time.
Thus, for example, the executive (Orion monitor) program
does not crowd other programs off the machine, it does not
appreciably delay the operation of the programs it is con-
trolling, and it provides a sophisticated running record of
failure of peripheral devices, program errors and the progress
of jobs being run. The punched-tape record of the log can
be used to produce costings of every job run, a valuable
feature for a computer department which has to charge out
work to other departments.

Nebula was and is most unusual in that it was designed in
close co-operation with other experts in the field of languages
and compilers (through the medium of B.C.S. study group
No. 5) and with users. This is probably the main reason
for the number of facilities it contains.

These features lie principally in the treatment of data
structures and their handling, though there are some aspects
of the procedure division which warrant attention, e.g. the

Y20z YOJBIN € U0 1sonB AG 00Z61/E LE/E/0 1 /BI0IME/UlWO0 /WO dNO"IWSPEDE//:SARY WOl PAPEOIUMOC



Discussion and Correspondence

verbs UPDATE and LOCATE, the latter being a scanning
and search facility. Incidentally, the procedure division is
truly “free form”.

As regards data handling, perhaps the most interesting
feature is the distinction between the internal logical structure
of a record and its physical arrangement for input or output,
i.e. the data structure used for internal storage and processing
is independent of the representation of the data on the
input and output media. This divorce between the internal
logical structure and physical arrangement of data contributes
greatly to the power of the language.

All input and output is described on a tabular form in
terms of the physical layout. Thus cards are described in
terms of columns and rows, and printing is described in
terms of line and character position. The facilities associated
with printing, for example, are very powerful: a variable-
length item may be positioned on another variable-length
item, and printing can be made conditional. Furthermore
codes can be automatically converted to plain-language
words and phrases.

Nebula has very good facilities for handling variable-length
records, and data may be described as:

(a) Variable-length alphanumeric data items.

(b) Repeated group of items (a fixed or variable number of

occurrences).

(c) Optional item (requiring only one bit of storage when

absent).

These data types can be used in any combinations and may
be nested, e.g. one may have a repeated variable-length item
within an optional repeated group within an optional group.

Everything, of course, has a cost and these facilities have
to be used with intelligence, e.g. a repeated variable-length
group is particularly expensive in terms of addressing routines.

Where a file contains variable-length data it expands or
contracts with the presence or absence of that data. This
can be a major factor affecting tape usage. For example, in
an insurance application one may have to allow for the
possibility of as many as 500 items per policy record as
against an average of only 100 actually present.

There are two facilities of particular interest to those
handling suites of programs using complex files. First,
while the programmer may leave the detailed file organization
entirely to the compiler, he can if he so desires take this
function over and “hand pack” his files. thus ensuring the
most economic use of every bit. Second, he is able to describe
part or all of one file structure as being identical to another.
This is a most valuable means of achieving compatible
interfaces between files.

Two aspects of vital importance to the user, diagnostic
facilities and compiler listings, have been shown in actual
practice to be good.

The extent of our own use of Nebula may be judged from
the fact that we have already implemented in it a suite of
39 programs, producing a total of over a quarter of a million
three-address instructions. Our use of Nebula is continuing
and we now have a total of some fifty programmers engaged
on two even larger suites of programs.

We have, of course, suffered from our share of the usual
teething troubles of a new compiler. Furthermore the speed
of compilation is still not as fast as we would like, although
this is largely offset by the excellent checking and diagnostic
facilities already referred to, and by the power of the language.

It is therefore felt that in Nebula we have something which
merits the closest attention, before we start going through
the wilderness again with a new language such as PL/1.

314

References

BraunNHOLTZ, T. G. H., FRASER, A. G., and HuNnT, P. M.
(1961). NEBULA: A Programming Language for Data
Processing, The Computer Journal, Vol. 4, p. 197.

I.C.T. NEBULA Reference Manual.

Fraser, A. G., and SMarT, J. D. (1966). The COMPL
language and operating system, The Computer Journal,
Vol. 9, p. 144.

To the Editor
The Computer Journal

Sir,

At the PL/1 Symposium on 18th May Mr. D. F. Hendry of
the Institute of Computer Science emphasized that the
facilities provided by a high level language for the description
of data were as important as the procedural facilities of the
language. Suitable data description facilities can result in a
drastic reduction in the programming effort required because
the majority of red-tape operations do not need to be
explicitly stated. This also clarifies the logic of the program
and reduces its size. PL/1 does not provide facilities of this
nature and it was noticeable that many of the speakers for
the PL/1 users criticized the language in this respect.

A language which does satisfy this criterion is the Nebula
language which not only provides powerful file structure
facilities but also separates the description of the physical
appearance of the data from the description of the logical
structure of the file. Thus a programmer is not constrained
in the logical design of the file by the physical lay-out of the
data. Moreover, this separation allows the programmer to
describe the physical appearance of the data in a simple and
direct manner, and the compiler can relieve the programmer
of all the work of organizing the input and output of the
data.

The Nebula language was originally described by Braun-
holtz et al. (1961) but has been considerably developed since
in close collaboration with the users. It is now a most
advanced and flexible high level programming language for
commercial data processing.

Yours faithfully,
K. H. M. NOBLE

c/o I.C.T., 61 Broadway,
Bracknell, Berks.
10 July 1967

Corrigendum

When reporting the PL/1 Symposium, this journal Vol. 10,
p. 211, it is regretted that a misleading impression was given
of experience at B.O.A.C. The third sentence of the first full
paragraph in col. 2 of p. 211 should be replaced by:

“It was easy to write and the reluctance of experienced
programmers to use the new language gradually wore off;
COBOL and FORTRAN programmers easily made the
change. The new language proved unsuitable for some
Operational Research projects and the OR programmers had
to revert to the use of FORTRAN,”

Y20z YOJBIN € U0 1sonB AG 00Z61/E LE/E/0 1 /BI0IME/UlWO0 /WO dNO"IWSPEDE//:SARY WOl PAPEOIUMOC



