The design of multiple-access computer systems: part 2

By M. V. Wilkes and R. M. Needham*

In a previous paper, one of the authors discussed some of the hardware and software problems
facing the designer of a multiple-access computer system. The present paper carries the dis-
cussion further and surveys certain areas of system design that are at present far from being well
understood. In particular the problem of communication between processes in a multi-computer
configuration is discussed. The authors offer no final solutions, but endeavour to set in perspective
some of the problems that must be solved before highly efficient multiple-access systems can be

designed.

In a recent paper entitled “The design of multiple-
access computer systems’” (Wilkes, 1967, referred to
here as Part 1), one of us discussed, largely from the
point of view of the software programmer, some of the
problems involved in the design of large-scale multiple-
access systems. In this paper, we propose to consider
possible computer systems in greater detail and to dis-
cuss the related software problems. It would be much
too early to offer any final solutions, but we will attempt
to put in some sort of relationship to one another the
various approaches that may be made and to illuminate
some of the fundamental problems that have to be solved.

By far the most straightforward system is that of
simple swapping in which only one object program is in
core at a given time. It seems likely that, if drums are
to be used for swapping, then swapping time will make
this method uneconomic in the future. If, however,
mass core memories become cheap enough, they could
be used instead of a drum, and this might change the
situation. The aim would be to make the transfer rate
sufficiently high to consume all the storage cycles of
the high-speed store; since mass core is, by its nature,
slower than main core, this implies that the mass core
should be designed with sufficient parallelism to permit
rapid transfer of blocks of information, and that the
circuits should also be designed with this in view. At
the present time, the cost of doing this is very high.
One type of mass core now being developed, which has
a word length of several hundred digits in which can be
accommodated a number of computer words, would
lend itself well to this application. On the whole, the
economics of simple swapping with mass core memory
do not look very attractive at the present time. On the
other hand, it is difficult to overemphasize the advantage
of being able to use very simple software that is cheap
both to construct and to maintain and that imposes
very small system overheads.

Some time ago, when it appeared that mass core would
have an access time perhaps ten times as long as main
core, and when it also appeared that there would be
no time advantage in transferring blocks of consecutive
words compared with the transfer of the same number
of words randomly placed in memory, one of us put
forward an organization based on the slave memory

principle (Wilkes, 1965). This suggestion does no
appear to have been taken up, and it is possible that the
premises are now false. However, it is also possible
that the proposal has not been properly understood, and
we believe that it is worthy of further study.

What one might term the conventional approach-—in
the sense that many people seem to adopt it unquestion-
ingly—is to have a large main core memory backed by a
drum, together, of course, with the large disc file that
appears in all systems. The large main core memory
consists of a number of modules which are connected
through a criss-cross switch to several processors. The
design of the switch must allow for simultaneous paths
to be set up, so that all the processors can be connected
to a memory module at the same time. The whole
system is multi-programmed, there being a number of
object programs in core at once. Undoubtedly, we shall
see such systems in operation and undoubtedly they will
work. In the present state of knowledge, however, the
construction of a supervisor for such a system is an
immense task, and when constructed it has severe run-
time overheads. No doubt substantial improvements
will be possible with further study, and it is probable
that the greater part of the development effort available
in the near future will be devoted to such systems.

An alternative to the multi-processor configuration is
the multi-computer configuration. Here we have a
number of processors, each with its own core memory
and constituting, in effect, a complete computer; the
peripheral capability of some of these computers may,
however, be rudimentary compared with that of con-
ventional computers. Some discussion of the special
communication problems that occur in multi-computer
situations will be given later. It is possible for a multi-
computer configuration to be operated either on the
principle that there is one program resident in each
computer at a time, or with multi-programming in each
computer.

The hardware configurations that can be devised are,
of course, endless, and it is not to be expected that all
actual configurations will fit neatly into the classification
just attempted. For an example of a different approach
to the design of a multi-computer situation, see Aschen-
brenner et al. (1967).

* University Mathematical Laboratory, Corn Exchange St., Cambridge.

¥202 Iudy 61 uo 1sanb Ag 98€9Y/S L E/P/0 L/81oIe/|UulWwoo/wo0 dno-ojwapeode//:sdiy wolj papeojumoq



Multiple-access systems

In order to illustrate the somewhat different signifi-
cance that attaches to swapping in a computer with
automatic paging and a virtual memory, than attaches
to it in one of more conventional design, we will consider
two systems. Both have a disc and a high-speed drum
on which system files and user files are stored; which
files go on the disc and which on the drum is at the
management’s discretion. In the first system, programs
are read into core from the files containing them when
the programs are first loaded; data files remain on the
disc or drum and are accessed in the ordinary way. Some
space on the drum is set aside for swapping and, when a
user’s quantum of time is exhausted, his program is
transferred from core to the drum. Later, when that
user’s turn comes up again, the program will be reloaded.
Thus, at any time, a given user’s program is either in
core or exists on the drum as a core image. When the
program eventually becomes dead or dormant, the
core image still exists on the drum; eventually it will be
overwritten by the next program activated by that user.
Until this occurs, however, the program is available for
postmortem examination or reactivation and, in addition,
the user can, if he wishes, by making use of a SAVE
command, file it away for future use.

The second system also has files on a disc and on a
drum, and it has, in addition, the full paraphernalia of
segmentation, paging, and virtual memory. When the
scheduling algorithm adds a process to the list of those
active, such pages belonging to that process as are
required are brought into core by the paging algorithm.
Any page which has not been accessed for some time is
liable to be over-written if space is required for another
page belonging to the same or another process; if it has
been changed since being loaded, but not otherwise, the
page will be written back to the filing system. When a
process is rendered inactive by the scheduling algorithm,
there is strictly no need for any special swapping action
to be taken, since inactive pages will, in the ordinary
course of events, soon be overwritten by the paging
algorithm. However, an improvement in efficiency can
be achieved if the paging algorithm is apprised by the
supervisor of the fact that certain pages have become
inactive and are available for immediate overwriting.

It is to be noted that when a virtual memory is used
in this way, there is no concept of a core image and no
SAVE command. The user thinks of his program,
together with any data segments attached to it, as
existing in the virtual memory during the whole time
that it is being run; when it becomes dead or dormant,
it is still there with any changes that have taken place
during running. If the user wishes to preserve the
original program, he must make a copy of it (or of the
parts which are liable to be changed by running) before
he activates it.

The system just outlined has the advantage that the
extra mechanism—over and above the paging mechanism
—that must be provided for swapping is very simple, or
even non-existent. As far as files held on the drum are
concerned, we reap the full benefits that paging gives by

316

way of reduction in traffic to and from the core memory*
However, for files held on the disc, there is the longer
transfer time to be taken into account whenever a page
is brought down. Swapping is, in fact, taking place to
and from the disc, and the drum is not being used at all.

The extra swapping time does not matter if it can be
overlapped by multi-programming. As pointed out in
the next section, however, multi-programming is not
without its costs. Various methods for making better
use of the drum can be suggested. It is possible, for
example, to copy programs from the disc on to the drum
before they are offered to the supervisor for running, and
to copy them back again, if necessary, afterwards. The
objection to this procedure is that it is likely to defeat
its own object by creating a good deal of extra traffic
between disc and drum. Another method which, we
understand, is being followed in one implementation, is
to swap pages to and from the drum, even though their
real home may be on the disc; eventually, the versions
held on the disc of pages that have been modified during
the running of the program will have to be updated.
Quite complicated book-keeping is necessary, and some
additional traffic from the drum via the core to the disc
results.

The efficiency of a multiple-access system based on a
virtual memory must depend very much on the solutions
obtained to the problems that have just been discussed.
So far, very little experience in this area has been made
public.

The consequences and costs of multi-programming

With multi-programming, several object programs are
resident in core at the same time, in addition to the
permanently resident part of the supervisor. The object
of multi-programming is to reduce the processor idle
time that can otherwise occur when the single object
program in core is waiting for a response (from the
drum, a disc file, a magnetic-tape drive, or some other
peripheral), and the supervisor is unable to make use of
the time. Clearly this benefit is obtained only if there is
enough core to accommodate the two or more object
programs. If, for example, there is 32K of core avail-
able for object programs, and 32K-jobs are permitted,
then it is doubtful, given an average mix of jobs, whether
there will be enough short ones for the extra throughput
achieved by multi-programming to justify the overheads
incurred in providing it. These overheads manifest
themselves in a larger supervisor and in more supervisor
time. Thus, if jobs of maximum size are common, in
order to make multi-programming pay off, one must
buy a larger core memory—probably twice as large—as
is necessary to hold the largest program permitted. This
extra memory, together with the extra overheads of the
supervisor, represents the price paid for the greater
throughput.

In the above, we have assumed that there is no paging.
Paging enables better use to be made of core memory,
so that less memory is required for a particular job.
When this has been allowed for, however, the argument

¥202 Iudy 61 uo 1sanb Ag 98€9Y/S L E/P/0 L/81oIe/|UulWwoo/wo0 dno-ojwapeode//:sdiy wolj papeojumoq



Multiple-access systems

given above remains very much the same. More core
is needed if several object programs are to be active at a
given time than if only one is to be active.

One consequence of multi-programming that is un-
popular with programmers is that the management is
driven to put pressure on them to keep their programs
short. In the computer systems with which we have
been familiar until recently, a given program might just
as well occupy the whole available memory, since any
memory left over could not be used for any other purpose.
Apart from multi-programming, however, the importance
in multiple-access systems of reducing loading and
swapping time would, in any case, have led to a demand
on programmers to keep programs short.

Multi-programming enables a greater throughput to
be obtained by reducing processor idle time. As we
have just seen, however, this advantage is not obtained
without some cost in equipment. The fall in the cost
of processors enables us to consider an alternative way
of securing a high throughput, namely to provide a
number of processors that can run simultaneously, and
to allow any given processor to remain idle while the
program on which it is working is waiting for a response
from a peripheral device. This avoids the complications
of multi-programming. A multi-processor system, in
which the processors share common memory, can be
used in this way. However, if multi-programming were
abandoned, one would perhaps be drawn towards the
multi-computer arrangement in which each processor
has permanently associated with it enough memory to
hold the largest program for which that processor is
intended to cater. The total memory required is probably
not much more than that needed for a multi-processor
system (without paging) and no criss-cross switch is
necessary. This latter item is quite expensive and its
presence tends to degrade the performance of high-speed
core memory by the transmission delays that it inevitably
introduces. In fact, it is hard to avoid the conclusion
that the impossibility of designing a criss-cross switch
that does not introduce some delay, means that, if core
memories and processors of the highest possible speed
are to be used, then a multi-computer, rather than a
multi-processor configuration, must be chosen. For
systems of normal speed, there is little doubt that the
multi-processor solution is more economic at the present
time; the situation could easily become changed, how-
ever, as the cost of processors falls.

An important type of multi-computer system is one in
which a small peripheral computer is used for com-
municating with consoles and other peripheral devices,
and in which a large system, which can itself be multi-
computer or multi-processor, is used for processing.
The connection between the small computer and the
large system is made via the disc. The small computer
contains the file master, together with the file directory,
and an editing program. Files containing programs and
data are created by users at consoles, or read in through
input devices. These files have names by which they are
known to the file directory. The large system draws its

317

programs and data from named files on the disc and
similarly returns its results to named files. In addition
to programs for file management, the small computer
could very well contain other programs designed to give
rapid interaction with the user in typical circumstances;
an example is a JOSS type system. Thus a great part
of the rapid conversational response needed by the
average user would be provided in a very efficient way,
that is, by a separate small computer (no larger than is
necessary) dedicated to the purpose.

The organization just outlined would suffice if no
full conversational mode working (other than that
provided by the peripheral computer) were required. A
program would, however, only be able to communicate
with its console via the disc. Some limited conversational
mode working might be provided in this way, but to go
further would require the provision of a direct transfer
channel between the memory of the peripheral computer
and the main core memory. Additional supervisory
overheads would, of course, be incurred in administering
this channel.

Organization of disc storage

It was mentioned in Part 1 that the first step in the
design of a filing system is to establish a satisfactory
method of controlling the allocation of space on the
disc. This space is divided into records, the length of
which depends on the particular disc file used; in a
typical case, a record consists of 512 computer words.
If files were of fixed length, then an easy and efficient
procedure would to be allocate a number of consecutive
records to each file. Since, however, files vary in length
dynamically, it is necessary to use a chaining technique
of the type familiar in list processing. In the simplest
form of this technique, one or two words in each record
are used to contain the link, the rest containing data.
Initially, all the tracks on the disc are chained together
to form a free list.

A preferable system is to maintain a table, or storage
map, containing an entry for each record on the disc.
Chaining of records is then done by means of appropriate
entries in the storage map and not by recording links in
the records themselves. This has the advantage that
administration of the records can be performed without
accessing them. Administration in this sense includes
setting up the free list in the first place, returning records
to it when they are no longer needed, locating particular
records in a multi-record file, and checking the con-
sistency of the filing system after a failure has occurred.
With some hardware systems there is a further advantage
in not having to use any of the words in a record to
contain links. This is the case in the Atlas 2 system,
where the record is 512 words, both on the disc and on
magnetic tape; it would be rather inconvenient if disc
records contained only 510 words.

A disc map normally occupies several thousand com-
puter words and is rather large to keep permanently in
the memory. It can, however, be divided into sections,
and if there is some sort of paging, software-simulated

¥202 Iudy 61 uo 1sanb Ag 98€9Y/S L E/P/0 L/81oIe/|UulWwoo/wo0 dno-ojwapeode//:sdiy wolj papeojumoq



Multiple-access systems

or otherwise, then there is a good chance of the part of
the map required being available in core.

The problem of organizing space on a drum is very
similar to that of organizing space on a disc, and much
of what has been said about discs applies equally well
to drums. Indeed, if a system is equipped with both a
disc and a drum, there is everything to be said for the
principle that all space on the drum, other than that used
for swapping, or for holding parts of the supervisor that
are not permanently resident in core, should be treated
as far as possible in the same way as space on the disc,
and handled by a common system. This means that the
system can put a file equally well on the disc, or on the
drum; it is, in fact, a user or management decision
where a particular file goes, the decision being taken on
considerations of response time and economics. It is
to be understood that, in what follows, references to a
disc can, in general, be interpreted as though they were
references to a drum, and vice versa.

It is important to keep clearly in mind the relative
roles of character files and binary files. Character files
are associated with the functions that, in earlier days,
would have been dealt with by primary input and output;
they are like character strings on punched paper tape.
Binary files are much more like magnetic tape on to
which blocks of binary information can be transferred
from core. The analogy is very close if a magnetic tape
system with addressable records is used. As pointed
out in Part 1, however, the distinction between character
and binary files lies not in the way they are stored on the
disc, or treated by the filing system, but rather in the
way they are accessed.

When a character file is used for input, access is usually
required to it line by line or character by character. It
is one of the tasks of the supervisor to provide this
facility. Whenever a line or a character is required, the
user program makes a call on the supervisor to deliver
it. Since transfers to and from the disc can only take
place in units of complete records, this implies that space
in core memory must be used for buffering. The
management of such buffering space calls for careful
consideration.

If programs are normally run to completion once they
have been loaded into core, that is, if swapping is the
exception rather than the rule, then input buffering can
be done wholly in space available to the supervisor. If
a program is swapped out of memory, any information
being buffered on its behalf is abandoned, and when the
program returns to memory, the buffer is refilled. If a
good deal of swapping takes place, it is better that the
buffer space should be regarded as part of the user’s
working space, although it is used not by his program
but by the supervisor, and the long arm of the supervisor
extends to prevent him from accidentally writing into it.
The advantage of treating the buffer as a part of the
user’s space is that, when the user’s program is swapped
out of core, anything in the buffer goes with it, and
automatically returns when the program returns.

A similar buffering problem arises when a character

318

file receives output from a program. In this case, the
necessary buffer space is probably better regarded as
belonging to the supervisor. Once information has
reached the buffer, it is beyond the reach of the program,
and the supervisor can write it into the file at any time
that the space occupied by the buffer is needed for some
other purpose.

In a virtual memory environment, the supervisor has
exactly similar responsibilities for the buffering of
character files. A character file used for input can be
attached as a segment either to the user program or to
the supervisor; a character file used for output is probably
better attached to the supervisor.

It might be remarked here that, unless pages of a small
size can be used, considerations of efficiency may render
it inexpedient to use an automatic paging system for
buffering small quantities of information. This remark
applies even more to the buffering of information from
teletypes than to the buffering required in accessing a
character file.

File names and the avoidance of clashes

When access is first required to a file, an appeal must
be made by the user program to the file master. The
file is referred to by its full alphanumeric name, including
the name of the directory in which it is to be found. The
file master checks that the file exists and that access is
permitted. It then passes information about the file and
the user concerned to the supervisor. The file is then
said to be open and the user program may make future
references to it by calling on the supervisor. The super-
visor maintains a list of the files that are open in this
way, together with a direct reference to the number of
the record on the disc where the file is to be found. If
the file extends over more than one record on the disc,
this reference is updated as the file is worked through,
use being made of the storage map for this purpose.
Once a file is open, it is not necessary for a user program
to refer to it by its full alphanumeric name; instead, it can
be referred to by a number giving its position in the list.

When the Cambridge multiple-access system was
developed, it was possible to make use of a system of
stream numbers already provided by the supervisor for
dealing with input and output and for transfers to and
from magnetic tape. Under this system, the programmer
writes his program so as to take inputs from input streams,
and to send outputs to output streams. The connection
of these streams to physical input and output devices,
or to magnetic tape, is effected not by the program, but
by a preliminary job description. This system was easily
extended to make it possible to connect streams to files.

The advantage of proceeding in this way is that the
program can be written entirely in terms of streams,
leaving until later the specification of where information
comes from or where information goes to. Thus, by
writing appropriate job descriptions, a program can be
fed with information from a document read in from a
tape reader, typed on a console, or taken from a file;
and similarly for output. The request to the file master

¥202 Iudy 61 uo 1sanb Ag 98€9Y/S L E/P/0 L/81oIe/|UulWwoo/wo0 dno-ojwapeode//:sdiy wolj papeojumoq



Multiple-access systems

to open a file is made when the job description is pro-
cessed, and this necessary procedure is thus completely
divorced from the accessing of the file by the program.

It will be appreciated that, since an ordinary user
writes many programs over a period of time and creates
many files, some system such as that outlined is abso-
lutely necessary in order to avoid name clashes. If
programs had written into them the actual names of
files that they require, and if different programs used
the same names with different meanings, then much
confusion could result. At the best, much tedious
renaming of files would be necessary.

When the Cambridge system is used for processing
jobs off line, the job description is one of the documents
submitted along with the program and other input docu-
ments. All of these documents can, if the programmer
wishes, be taken from named files. When working from
a console, the programmer can type what is equivalent
to a job description in the form of parameters following
the command that initiates his job. Before making any
attempt to run the job, the system checks that files
referred to in the job description exist and are accessible
to the user concerned. If all is not in order, the online
user is informed immediately. The program may still
fail, however, if it makes reference to a stream which has
not been set up by the job description.

The CTSS proceeds in a similar way. Programs are
written so as to refer to named files. If, when the pro-
gram is activated, these files are found to exist, the
program runs normally. If a file is missing, the user
receives a message “NEED ALPHA BETA” or whatever
the name of the missing file may be. He can then type
“USE GAMMA DELTA” and the program will proceed
using the file GAMMA DELTA instead of the file
ALPHA BETA.

Communication areas

It is frequently necessary that concurrently running
processes should be able to communicate with one
another. They may do this via communication areas in
storage. It is obviously important that once one process
has begun to make changes to the information held in a
communication area no other process should be allowed
to access the information until the changes have been
completed. When the communication area is in core,
this may be achieved by using one of the registers in it
to contain a flag. The flag is regarded as set or unset
according as the register contains one or the other of
two arbitrarily selected quantities, e.g. zero or one. When
a process is about to make a change to the information
in the communication area, it first sets the flag. Any
other process finding the flag set will itself refrain from
initiating any similar action. A difficulty, however,
arises if there is an interval between the testing of a
flag, finding that it is unset, and then setting it, since, if
the process is interrupted before these operations are all
complete, confusion can result. This situation can be
avoided if the processor has in its order code an order
which enables the flag to be tested and set in one storage

319

cycle. The absence of such an order can lead to serious
inconvenience and much unnecessary calling on the
supervisor. A suitable order is one which tests the
content of a storage register and, if the content is found
to be zero, sets it to some non-zero value; if the content
is non-zero, the order brings about a jump. Any order
which changes the content of the storage location without
destroying all evidence of what was there before can,
however, be pressed into service; an example is an order
which adds a number to the number in a storage register
in one storage cycle.

It is sometimes necessary to make use of communi-
cation areas on a drum or disc. An example of such a
communication area is a file directory. Here one runs
up against the difficulty that drums are not usually
provided with a writing operation that preserves evidence
of the former content of a record. It would, of course,
be possible to design the hardware so that the entire
drum—or the relevant section of it—could be busied
long enough for the record to be read into core and
written back in a modified form. The problem is compli-
cated by the fact that requests are not necessarily serviced
in the order in which they are made on account of the
need to minimize latency time. A change of ordering
can also occur when a transfer has to be repeated
because it has not been made correctly.

A better plan is to associate a flag with a communi-
cation area on drum or disc, and to keep the flag in core
storage. Since it is in core, this flag can be tested and
set in one storage cycle by means of an order of the type
just described.

The above solution is not, however, possible in a
multi-computer configuration in which the separate
computers all have access to a common drum or disc,
but have no core in common. In fact, if there is no
direct communication between the computers at all,
very serious problems are presented to the software
designer. These problems can be avoided completely
by the simple expedient of providing a small amount of
immediately accessible storage available to all the com-
puters. Even the provision of a single flip-flop is enough
to turn the software designer from a worried man into
a contented one. He would, however, be able to make
good use of a whole register (composed of flip-flops)
whose contents could be tested and selectively changed
by the execution of a single order. A less satisfactory
alternative is the provision of interrupt connections be-
tween the computers.

The serious problems of communication that arise if
there is no communication between the computers will
be illustrated by considering the case of the important
configuration outlined above, in which a small computer
services user’s requests, and passes problems for solution
to a larger system which then sends the results back. It
is assumed that the only communication between the
two computers is via the disc, and that, although both
computers have access to the disc, they cannot both
access the same record at the same time. A possible
solution to the communication problem will be described

¥202 Iudy 61 uo 1sanb Ag 98€9Y/S L E/P/0 L/81oIe/|UulWwoo/wo0 dno-ojwapeode//:sdiy wolj papeojumoq



Multiple-access systems

Two communication areas on the disc are provided;
one, the forward communication area is used to send
messages from the small computer to the large system, and
another, the backward communication area, is used to send
messages from the large system to the small computer.

The small computer decodes the job description and
places in the forward communication area a specification
of the job to be done associated with a serial number
which will be referred to as the cipher. Ciphers will
eventually repeat, but it is assumed that there are a large
number of them. It is also assumed that either the com-
munication area consists of a single record, or that the
information in each record is complete in itself, so that
the information in one record can be safely used while
that in another record is being modified.

The large system periodically examines the forward
communication area, and copies particulars of the next
job to be done. The large computer makes a note of the
cipher in a list and proceeds to do the job; in due course,
it puts the results, or rather references to files containing
the results, in the backward communication area,
together with the cipher.

Periodically the small computer examines the back-
ward communication area and passes information back
to the user. When it has done this, it deletes the request
from the forward communication area. The next time
this area is examined by the large system, it notes that
there is no longer any reference to one of the ciphers in
its list; it deletes this cipher from the list and deletes the
corresponding results from the backward communication
area. The fact that each communication area is changed
by one of the computers only, eliminates any possibility
of the information becoming inconsistent.

It will be seen that the system overheads consequent
on not having some direct communication between two
computers are very serious. We have, however, not
enumerated them all. It is necessary for both computers
to have access to the same filing system, which implies,
among other things, that they must make use of a
common pool of space on the disc. Communications
relating to filing and the administration of this space
must be passed from one computer to another via
cumbersome machinery similar to that which has just
been described in detail. The result is unnecessary
complication and duplication of software.

Restarting after system failure

Making it possible for the system to be restarted after
a failure with as little loss as possible should be the
constant preoccupation of the software designer. Even
if all software bugs are eventually eliminated, hardware
faults will always occur. Clearly, no software system
can be entirely protected against hardware failure, but
some are better than others. Often, what appear to be

References

simple and straightforward software solutions, which
involve a minimum of disc transfers, have to be rejected
since the protection they give is not as good as it could
be. Restart procedures should be designed into the
system from the beginning, and the necessity for the
system to spend time in copying vital information from
one place to another should be cheerfully accepted.

It must be recognized that there will be occasions on
which the situation after a failure is such that a complete
reinitializing of the system is necessary. This will involve
making use of the archive tapes to restore the filing sys-
tem to what it was at some previous epoch.

It is good practice in systems programming to mini-
mize the time during which the contents of a communi-
cation area—or indeed of any area containing systems
information—are being modified and hence are tem-
porarily inconsistent, since the consequence of a system
failure occurring during this time can be serious. Often,
when a number of things have to be done, it will be
found that one particular order of doing them gives
minimum vulnerability.

It is important that, as part of the procedure used to
restart the system after a failure, the information in
communication areas should be made consistent, even
if it is not possible to make sure that it is correct. Other-
wise, the system may operate in a crippled form and
may, perhaps, eventually be brought to a halt by reason
of a software tangle from which recovery is impossible.
This remark is particularly important in relation to the
file directory and disc storage map. An inconsistency
may result in some records on the disc being neither
recorded as free nor as belonging to one of the files in the
directory. If they are left as they are they will be lost
to the system. In the absence of further information as
to their identity, the best thing that can be done with
such records is to put them on the free list. Many other
examples can be given of the way in which inconsistent
information can lead to eventual trouble. For example,
inconsistent scheduling information can easily cause the
supervisor to go into a loop.

Redundant information can be included in supervisor
communication or data areas in order to enable errors
caused by system failure to be corrected. Even a
partial application of this idea could lead to important
improvements in restart capability. A system will be
judged as much by theefficiencies of its restart procedures
as by the facilities that it provides.

In preparing this paper, we have drawn heavily on
experience obtained in designing the Cambridge muitiple-
access system, and our debt to our colleagues, in parti-
cular to D. F. Hartley and B. Landy, is a heavy one. We
are equally indebted to experience obtained when visiting
Project MAC at M.I.T. and to the many discussions that
we have had with members of the staff of that project.

WILKES, M. V. (1967). The design of multiple-access computer systems, Computer Journal, Vol. 10, p. 1.
WILKES, M. V. (1965). Slave memories and dynamic storage allocation, IEEE Trans. on Electronic Computers, Vol. EC-14, p. 270.
ASCHENBRENNER, R. A., FLYNN, M. J., ROBINsON, G. A. (1967). Intrinsic multiprocessing, AFIPS Conference Proc., Vol. 30, p. 81.

¥202 Iudy 61 uo 1sanb Ag 98€9Y/S L E/P/0 L/81oIe/|UulWwoo/wo0 dno-ojwapeode//:sdiy wolj papeojumoq



