
The implementation of syntax analysis using ALGOL, and
some mathematical applications

By Eric Foxley and Peter King*

This paper describes the development of an ALGOL program to perform syntax analysis, using a
set of syntax definitions supplied in a notation similar to Backus Normal Form. Five applications
of syntax analysis are then discussed, including algebraic differentiation and compilation.

When the Department of Mathematics at the University
of Nottingham initiated a postgraduate course in com-
puting, it was felt that teaching the principles of com-
piling could be done more satisfactorily if a "Compiler
Compiler" program of the type implemented on Atlas
by R. A. Brooker (1963) was available. Since this
University's computing service was transferred from a
data link with Manchester University's Atlas to its own
English Electric KDF9, no such program was available.
It was therefore decided to attempt an ALGOL program
to demonstrate some of the main principles.

Any program of this type consists of two main parts,
one to perform syntax analysis on the source program,
and the other to use the results of the analysis to perform
compilation. The development of a syntax analysis
procedure is described below. However, during the
development of this part of the program, many applica-
tions other than compilation became apparent, and this
paper describes a selection of applications, only touching
briefly on compilation. It is hoped to produce a further
paper giving fuller details of compilation.

Syntax analysis
Any source text which is to be investigated using

syntax analysis must be a phrase structure language.
The most commonly used method of describing the
syntax of phrase structure languages at present is known
as "Backus Normal Form". Examples of definitions
are

Example 1

<digit> ::= l|2|3|4|5|6|7|8|9|0

meaning
"a (phrase of type) digit is defined as (the symbol) 1 or
(the symbol) 2 or . . . or (the symbol) 0".

Example 2

<unsigned integer) :: = <digit>|<unsigned integer><digit>

meaning

"an unsigned integer is either a digit, or an unsigned
integer followed by a digit".

* Department of Mathematics, The University, Nottingham.

Example 3

<integer> : := <unsigned integer)| + (unsigned integer)|
—(unsigned integer)

meaning

"an integer is an unsigned integer, preceded by either
a + or a — or no sign".

Thus the symbol " : : = " means "is denned as", the
symbol " |" means "or", and a name within the brackets
< and > represents a phrase class.

Note that the definition of (unsigned integer) is
recursive, and many alternative definitions are possible,
for example

(unsignedinteger) ::= (digit)(unsigned integer)|(digit)

If a source string satisfies the /th of the possible alter-
native definitions of a certain phrase, we will say that
it is of category i. Thus in our first phrase definitions
above, +26 is an integer of category 2, 26 is an integer
of category 1 and an unsigned integer of category 2
consisting of an unsigned integer of category 1 and a
digit of category 6.

In anticipation of typing these phrase definitions on a
Flexowriter, we are using the symbols < and > instead
of (and > as in standard Backus Normal Form, since
the latter are not available on the Flexowriter. Also, in
the spirit of ALGOL, we ignore all layout characters in
the definitions. We therefore need a visible terminator,
and will use a semi-colon from now on.

Further examples
(operator)
(variable)
(operand)

(expression)

= +1-1-1/;
= x\y\z;
= (variable) | ((expression));
= (operand) | (operand)(operator>

(operand);

Note that recursion still exists, but not within a single
definition. Expressions satisfying this syntax are

x + y
{x.y)lz
«x + y).z) + (x-y)

but the following expressions do not satisfy the

325

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

definitions:

x. - y
x + y + z
— z
2.x + y
xy + z

In the ALGOL 60 Revised Report (1963) the definition
of an identifier is

{letter) : := a\b\c\d\ \z\A\B\ \Z;
{identifier) :: = {letter) | {identifier){letter> |

{identifier){digit>;

A definition of an ALGOL variable is

{variable) :: = {simple variable) |
{subscripted variable);

{simple variable) :: = {identifier);
{subscript list) :: = {arithmetic expression) |

{subscript list), {arithmetic expression);
{subscripted variable) :: = {identifier)

[{subscript list)];

The use of metasymbols in the source string

So far we have used the metasymbols

{ > | ; and :: =

We therefore cannot use this system to describe source
statements including these symbols, since to allow us to
write \a\ for the modulus of a we would require a
definition

{primary) : := {variable)|({expression))||{variable)|;
which is obviously open to mis-interpretation.

To overcome this difficulty (which will become more
significant as we introduce more metasymbols) we use
the notation {|> in phrase definitions to represent the
symbol | in a source string, {{> to represent {, {;> to
represent ; , etc. A list of statements separated by semi-
colons can now be defined using

{statement list) :: = {statement>{;>{statement list>|

{statement);

and a relation operator as

{relation operator) : := = | ^ | { { > | < | { » | > ;
Similarly, if the phrase definitions are not to be layout

sensitive, special notations are necessary to indicate the
presence of spaces, tabs and newlines in the source string,
if it is to be layout sensitive.

Outline of a method for syntax analysis
We require first a means of storing a set of phrase

definitions, and secondly a means of searching the stored
definitions and comparing them with a given source
string.

To search for a phrase type "digit", defined as

{digit) ::=0|l|2|3|4|5|6|7|8|9;

we search by comparing the given string (a single
character in this case) initially with the character 0, then
if it is not the same, comparing it with the character 1,
and so on until we find either

(a) it agrees with one of the given alternative characters,
or(b) all the alternatives have been tried, and none agrees.

The flow diagram is

phrase present, category 1

•»• phrase present, category 2

is

is

it

it

aO?

NO

a l ?

YES

YES

'NO

is it a 9?
YES

-> phrase present, category 10

NO

phrase absent

Similarly, with the definition

{type) :: = real | integer | Boolean;

the flow diagram is shown in Fig. 1 overleaf.

A definition involving another type of phrase is

{decimal part) :: = . {integer)

is first
character

?

NO

YES is this
followed by
an integer?

1 NO

4-
1

YES
—> >- phrase present

I phrase absent

I
This involves searching for an integer during the

search for a decimal part. This is easily catered for by
using a recursive procedure for the searching.

Requirements of phrase definitions
The standard definitions from the ALGOL report are

no longer suitable if searching is to be performed as
above, since the following two failures can easily occur.

(1) Infinite recursion

The definition

(u/s integer) : : = (uls integer) {digit)|

will cause continuous searching for an unsigned integer
in a closed loop.

326

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

>
is first

character
r?

>

YES is next
character

e?

NO

\

go back
to first

character

is
character

i?

•

YES

Syntax

YES

analysis

is next
character

a?

NO

is next
character

n?

NO

go back
to first

character

is
character

B?

•

phrase

>

YES

YES

NO

NO

\

is next
character

0?

NO

go back
to first

character

absent

y

NO

Fig. 1

is next
character

NO

is next
character

r?

NO

is next
character

n?

•

NO

YES phrase
^present
category 1

YES phrase
-̂present
category 2

YES phrase
-̂present
category 3

Such loops may also occur between two or more
definitions, i.e.

(a) : : = < * >

The necessary
that

(6) : : = < a >

conditions for avoiding such loops are

(a) no definition must start with the phrase it is
defining.

(6) no set of definitions (say Pi,. . .,Pn) must exist
such that one of the alternative definitions of Pi
starts with P2, Pi with P3, ...,Pn with Px.
These conditions are known as "cyclic non-

nullity", and require that each time a loop in a
rule-chain is traversed in analysing a source string,
at least one element is recognized in the source
string.

(2) Non-maximum search

If we define

iujs integer) : : = (digit) |(digit)(w/s integer);

(which avoids infinite recursion) the presence of an
integer of several digits will not be found: given the
string 326, the method of searching described above
will find the digit 3 and exit. The alternative definitions
must therefore be arranged such that they are in order
of decreasing size of phrase which may be found.

Hence we must define an unsigned integer as

<u/s integer) : : = <digit><"A integer)|<digit>;

and a variable either as

<variable> : : = Subscripted variable)|(simple variable);

or as

(variable) :: = (identifier>(parameter part);
(parameter part) : : = [(subscript list)]|(empty);

For identifiers we use

(identifier) :: = (letter)(rest of identifier);
(rest of identifier) : : = (letter)(rest of identifier) |

(digit)(rest of identifier)!
(empty);

Notice that our definitions of phrases such as (integer)

327

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

are now the reverse of the corresponding definitions in
the ALGOL 60 Revised Report. If our "search" pro-
cedure were altered to scan both the definitions and the
source string from the end forwards, we could use most
of the standard ALGOL Report definitions.

Implementation using ALGOL
We assume that each typed symbol can be read in by

the computer to produce a unique code number (the
"input code" of the symbol) by an instruction such as

i := readch;

The actual code numbers of each symbol in any
particular input system will be irrelevant, since the
definitions and the source string will both be read into
the computer using this procedure, so that comparing
characters in the definitions with characters in the source
string is independent of their numerical values. The
only assumption we will make is that the code repre-
sentations of the digits 0 to 9 are consecutive.

The IFIP ALGOL input/output procedures include

i := insymbol (stream, "string");

which sets i to the position of the next symbol from the
given input stream in the given string. Thus using

i : = insymbol (stream, "012345678910 .
ABCDEFGHIJKLMNOP");

would give the character "0" the code number 1, "," the
code number 12, E the code number 17, and so on. An
appropriate string would then allow most input systems
to be simulated, assuming that all codes were positive.
The phrase definitions and source string can thus be
stored in an integerarray. It is of interest to note that
an input string such as

real | integer

could in practice be stored in three different ways on
our Atlas-compatible KDF9 input system, for example:

Atlas readch
(visible characters I r I e I a I I I I I i I n I f I

reconstructed) I r I e I a I ' I ' I ' I " I * I
KDF9 charin
(non-advance

underline)
KDF9 inbasicsymbol
(ALGOL basic

symbols)

When the phrase definitions are stored in the array, the
code for | must be replaced by some code which cannot
represent an input character, so that the metasymbol |
cannot be confused with a symbol | occurring in the form
< | > in a phrase definitions, i.e. as a symbol which is
required in a source string. We will specify the code
representing the metasymbol by the value contained in
an integer variable "or".

To search for a phrase defined by

<trig fn> : := sin\cos\tan\sec\cosec\cot;

a _

| real | | | integer T

which has been stored in an interarray def as

s i \ n \ or \ c \ o | 5 \ or | / a n

we take the first symbol of the definition, s, and compare
it with the first symbol of the source string (which we
will assume has been read in and stored in an integer-
array ss). If it agrees, we continue fetching symbols
from the definition array, and comparing each one with
the next symbol of the source string array. If we find
the metasymbol or in the array def before any disagree-
ment occurs, the phrase is present. If a disagreement
occurs, we skip through the definition array to the next
occurrence of or, that is we try the next category, and
start at the beginning of the source string again. For
consistency, we add an or at the end of the definition,
so that whenever an or is reached in the definition array,
the phrase definition is satisfied. Following the last or
we insert a termination marker term. If this is reached,
all possible categories have been tried and failed, so the
phrase is absent. The values of both or the term must
be chosen so that they cannot represent an input character.

A set of instructions to compare definitions stored in
the array def from def[dpoint] onwards with a source
string stored in the array ss from ss[spoint] onwards, and
using the method outlined above, is as follows:

sstart : = spoint; category : = 1;

next: d : = def[dpoint];

if d = or then
begin search : = true; goto end end success;

if d = term then
begin search : = false; goto end en& failure;

if d = ss [spoint] then
begin spoint : = spoint + 1;

dpoint: = dpoint + 1;
goto next end one symbol found;

trynextcategory:

d : = dpoint;
for dpoint : = dpoint + 1 while def [dpoint] # or

do d := dpoint;
dpoint : = d + 2;
category : = category + 1;
spoint : = sstart;
goto next;

end:

To be able to refer to other phrase types in the
definition of a particular phrase type, we give each
phrase type a number, and for simplicity of typing,
always refer to phrase types by numbers. The notation
in use at present is typified by the definitions.

1 (digit) ::=0|l|2|3|4|5|6|7|8|9;
2 <«/* integer) : := <1><2>|<1>;

Thus any number contained between the metasymbols
"<" and ">" is interpreted as referring to a phrase of
type indicated by that number. The number at the

328

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

beginning of the line gives the number of that particular
phrase type. All symbols between this number and the
metasymbo] " : : = " are ignored; normally a verbal
indication of the name of the phrase type is inserted.
The use of names instead of numbers would be simple
to implement, but the system using numbers has been
found quite satisfactory in practice, and involves a
minimum of typing effort.

Within the integer array def, a definition such as

<trigfn> : :=

is stored as

(| -13 |) \ { -13 |) | or | term

Each occurrence of a "constituent phrase" in the
definition is represented by the negation of that phrase's
number. Since we are assuming that all representations
of symbols are positive, no confusion of phrase types and
actual characters can occur. We now add to our syntax
analysis instructions after the test if d = term then, the
instruction

if d < 0 then
begin comment this element of def represents a phrase

type;
if search (— d) then
begin dpoint : = dpoint + 1; goto next end;
goto trynextcategory end;

where the instruction search{i) is assumed to activate a
search for a phrase of type /.

Note that the pointer spoint, which indicates the
current point at which the source string is being searched,
must be non-local to the searching procedures, so that
it will be advanced during the operation search{—d) if
this search is successful. Because of this, and because a
later part of the search may fail within a particular
category, it is essential that the variable sstart be pre-
served during the operation search(-d). Similarly,
both dpoint and category must be preserved.

The definitions are stored in a one-dimensional array,
with another array whose /th element points to the start
of the definition of the phrase of type /. In our program
this second array is called i/f, (since it is essentially an
Iliffe vector, i.e. a vector whose elements are all addresses
of other elements).

The searching instructions can now be made into a
procedure which satisfies all the required conditions, by
containing them within

Booleanprocedure searchQ); value /; integer i;
comment takes the truth-value true if a phrase of type
i is present starting at positions "spoint" of array "ss";
begin integer sstart, dpoint, category;
dpoint : = ilf[i\;
. . . (searching instructions as above) . . .

end: end search;

The procedure for reading in phrase definitions to
the array def must operate as follows, where dpoint is

used to indicate the next free space available for storing
definitions:

1. Read an integer, say type, indicating the number of
this phrase type, and store the current value of
dpoint in ilf[type].

2. Skip intervening material until the metasymbol
" : : = " is reached.

3. Read characters to the array def until the terminator
is reached, replacing

(integer) by the negative of the integer
<symbol> by the symbol itself
| by the code or
; by the codes or, term.

4. Repeat, until a suitable terminator of the definitions
is reached, such as the occurrence of a phrase of
type 0.

The significance of the non-local identifiers is as
follows:

integer
equals:
termin:

or in:

or:
term:
zero:
ob:
cb:

variables:
the input code of the symbol " : : = "
the input code of the symbol terminating each
phrase definition, " ; " above
the input code for the symbol " | " in the phrase
definitions
the internal representation for the symbol " | "
the internal representation of the terminator
the input code for the symbol "0"
the input code for the symbol "<"
the input code for the symbol ">"

integer procedures
readno: reads the value of the next number on the input

stream
readch: reads the code of the next character on the

input stream

Boolean procedure
digit(i): takes the value true if / is a code number

which represents a digit, and false otherwise

The procedure is:

procedure readphrasedefinitions;

begin integer i,j, k, dpoint; dpoint := 1;
for k := readno while k # 0 do

begin ilf[k] : = dpoint;
for / : = readch while i # equals do;
for / : = readch while i =£ termin do

begin if / = or in then i: = or
else if / = ob then

begin i : = readch; if digit(i) then
begin i : = i-zero;
for j : = readch while j =fc cb do

» : = i*10 + j-zero;
i : = — i end

else j : = readch end;

329

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

def[dpoint] := i; dpoint := dpoint + 1 end;
def[dpoint] := or; def[dpoint + 1] := term;
dpoint : = dpoint + 2 end

end readphrasedefinitions;

Assembling the analysis record
Having analysed a program, or source statement, and

found that it is syntactically correct, we will presumably
wish to refer to the constituent parts which have them-
selves been analysed. In order to store details of each
phrase found to be present, we declare

integerarray type, cat, from, to [1 : length],
link [1 : links, 1 : length];

where length is dependent upon the complexity of the
source statement being analysed in any particular case.
The (th phrase is detailed by entries stored in

type[i]
cat[i]
from [i]
to[i]
link[\, i]
link[2, i]
link[3, i]

giving the type of the phrase
giving its category
giving its starting position in the source string
giving its finishing position in the source string

indicating the position of the details of the
constituents

The entries from[i] and to[i] specify the portion of the
source string which is occupied by the phrase, in case
we need to refer to it at some later time. The link entries
indicate the position in store of any phrases which were
required as constituents of the original phrase. As an
example, we will use the definitions

1 <variable>::=fl |6jc|rf |e|/ |g|A|iU|*|/;
2 (primary) :: =
3 <term> :: =
4 <sae> ::=

to analyse the source string

a + b — c

Note that we instruct our searching program to search
for a phrase of type 4. We do not instruct it to look for
a phrase type which satisfies the source string. The
analysis record will appear as follows:

i

1
2
3
4
5
6
7
8
9

10
11

type[i] cat[i\ from\i\ to[i]
link[j, i]

4
3
2
1
4
3
2
1
3
2

1
2
1
1
2
1
1
2
2
1
3

2
3
4

6
7
8

10
11

The first entry reads:
A phrase of type 4 was found (as required), of cate-

gory 1, occupying positions 1 to 5 of the source string,
and the records of the constituent parts are to be found
in rows 2 (for the <3» and 5 (for the <4».

The second entry (which gives details of the <3> just
mentioned) reads:

A phrase of type 3 was found, of category 2, occupying
only position 1 of the source string, for further details
see row 3.

The number of links required for any particular entry
depends on the number of phrase types which appear
as constituent parts of the definition of that entry.
Thus the definitions

require respectively 3, 2 and 1 links. Thus the width of
the declared array link must equal the maximum number
of constituent phrases in any definition. Usually we
find 3 to be sufficient.

While we are searching, we must therefore have a
pointer rpoint to indicate how much of the analysis
record arrays are already in use. Whenever the pro-
cedure search is entered, we must note the value of
rpoint (this is where details of this phrase will be entered)
and advance rpoint by 1 position to ensure that these
details are not overwritten. If the search is unsuccessful,
the pointer rpoint is moved back to its original position.
If the search is successful, all the details of this phrase
must be entered in the appropriate places. The necessary
instructions are:

On entry to search: this : = rpoint; rpoint : = rpoint + 1;
At failure exit: rpoint := this;
At success exit: type[this] := i; cat[this] : = category;

from[this] := sstart; to[this] := spoint
- l ;

The only remaining items to store are the link entries,
which indicate the position of the analysis records of
the other phrases involved in the definition. To do this
we set Ipoint (the link pointer) to 1 on entry to search,
and alter the recursive statement to read:
if d < 0 then

begin link[lpoint, this] := rpoint; if search (— d) then
begin Ipoint : = Ipoint -\- 1; dpoint : = dpoint + 1;
goto next end;

goto trynextcategory end;
We must also add the resetting instruction Ipoint : = 1;

after the label trynextcategory to reset the link pointer if
one category fails after some constituents have been
found.

The procedure is now complete, and can be used for
producing analysis records for arbitrary phrase defini-
tions and source strings. We will now describe three
additional features which have been found helpful.

330

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

(1) Built-in phrases

Searching for such commonly occurring phrase types
as letter, digit, identifier and integer using the procedure
search in the form described above is inefficient in two
respects. First, to find the <letter> Z may have involved
51 unsuccessful searches, when we probably know that
the input code for any letter lies between two known
limits. It would be more efficient to define a letter as a
character whose input code was between two given
numbers.

Secondly, if an integer is defined as

1. <digit> ::=0|l|2|3|4|5|6|7|8|9;
2. <integer> : := <1><2>|<1>;

the analysis record corresponding to the integer 12345
would be

I

1
2
3
4
5
6
7
8
9

10

type[i]
2
1
2
1
2
1
2
1
2
1

cat[i]
1
2
1
3
1
4
1
5
2
6

from[i\
1
1
2
2
3
3
4
4
5
5

to[i]
5
1
5
2
5
3
5
4
5
5

linklj,
2
-
4
—
6
_
8
—

10

i]

3
-
5
-
7
—
9
_
-
_

Such long analysis records are inconvenient and
wasteful. To overcome these disadvantages, we follow
the Compiler Compiler and have special definitions for
certain phrase types such as those mentioned above,
known as Built-in Phrases, or BIPs. In our version, we
have reserved phrase types with numbers up to 10 for
BIPs. Early in the procedure search we insert

if / < 10 then goto bips;

and at the end of the procedure insert either

bips: if / = 1 then begin

else if i = 2 then begin

(s e a r c h for B I P o f t y p e 1) . . .
end

, (s e a r c h for B I P o f t y p e 2) . . .
end

o r

bips:

digit:
letter:
integer: . . .

We have at present implemented BIP's for the follow-
ing phrase types:

begin switch j : = digit, letter, integer, ident;
goto s[i];
(search for a digit); goto end;
(search for a letter); goto end;

PHRASE TYPE

<letter>

<digit>

CATEGORY ALLOCATED

1 to 26, for A to Z
27 to 52 for a to z
The value of the digit

(integer)
(identifier) ^
<rest of identifier) >
(letter string) J
(string)

The value of the integer

An integer uniquely determined

(; or end or else)

by the first six characters

The internal code of the first
character after the opening quote
1, 2 or 3 respectively.

Further, the procedure to read in the phrase definitions
has been amended to interpret (/> to represent the
phrase number of a letter, (rf> for (digit), (/> for
(integer), («> for (identifier) (name) and (J> for
(string). This enables us to write, for example,

(decimal number) : := (/>. (/>|(/>.(f>;

(2) Simplifying the definitions

A very common type of phrase definition is
(sae) : := (term>(addop)(term>|(term>;

If the phrase we are searching turns out to be of
category 2, the search for a (term) is carried out twice,
once in the unsuccessful category 1, then again for
category 2. Since the definition of a (term) is similar,
an (sae) which happens to be a (factor) will involve 4
searches for a (factor); an (sae) which is a (primary)
will involve 8 searches for a (primary). With the
standard definition of a (simple Boolean) matters are
even worse. These difficulties can be overcome by
defining, for example,

(sae) :: = (term)(rest of sae);
(rest of sae) : := (addop)(term>| (empty);

To avoid the use of so many "rest of. . ." definitions,
we have introduced the notation

(sae) : := (term)[(addop)(sae)|(empty)];

which is read as: "an (sae) is a (term) followed by
either (addop)(sae> or (empty)". Any alternatives
either (addop)(sae or (empty". Any alternatives
between the metasymbols "[" and "] " must be preceded
by whatever precedes "[" and followed by whatever
follows "] " .

Other examples are

(program) ::= begin[(declaration list)|(empty)]
(statement list)end;

(declaration list) :: = (declaration>(; >[(declaration list)|
(empty)];

(statement list) : := (statement)[(;)(statement list>|
(empty)];

(for list element) ::= (arith exprn)[step (arith exprn)
until (arith exprn) |while(boolean expression)|(empty)];

The basic difference now is that if a definition fails
between "[" and "] " , the various pointers need only be
reset to their positions when "[" was passed, instead of
being reset as if to start a new category. The category
of a phrase is easily obtained in most cases as the number
of times a search has failed plus one. For example a
block would be a (program) of category 1, and a com-
pound statement would be a (program) of category 2

331

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

in the example above. Ambiguities of category arise
in a definition such as

where 4 possible categories exist. Such ambiguities are
ignored, so that if a unique and meaningful category is
to be obtained, then there must be only one occurrence
of " [" and "] " between any two occurrences of " : : = " ,
" ; " or " | " not within these symbols.

The essential additional features of the search pro-
cedure are now

1. If failure occurs before [is reached, skip the
definitions up to the next occurrence of | not con-
tained between [and], adding one to the category
for each | passed contained between [and].

2. If [is reached, note all pointer positions.
3. If success occurs after [, skip to the next] and con-

tinue searching, but note how many occurrences of
| were passed, in case a failure occurs after the].

4. If failure occurs after |, skip to the next occurrence
of |, resetting the various pointers to the values
noted in step 2 above.

5. If] is reached, none of the alternatives between [
and] is satisfied, so skip to the next occurrence of |.

6. If failure occurs after], skip to the next occurrence
of |, and update the category by the number of
occurrences of | passed in stage 3 above.

The counting in step 3 is necessary in definitions such
as

to ensure a correct category for <g> in the first definition.

(3) Control phrases
So far, our syntax searching has been a "passive"

operation, merely setting up the analysis record. It is
sometimes necessary to execute certain chosen instruc-
tions during the course of syntax searching. Examples
of occasions when such extra instructions are required
occur frequently during the syntax analysis of ALGOL
programs, such as

1. Whenever a declaration is found, the identifier and
its properties must be noted for reference in later
compilation.

2. If the search for a <for list) fails, the fixed word
symbol for must have been present, so a <for list)
must have been intended, but wrongly constructed
or typed. For the benefit of the programmer, the
faulty <for list) can be printed out with appro-
priate comment, and the source program skipped
to the next do.

3. Similarly, if a search for a <statement> fails
(excluding the dummy statement) all source pro-
gram up to the next end, else or semi-colon can be
printed out, and the syntax analysis continued.

The present means of implementing this requirement
is to use phrase numbers greater than 1000 to represent

what we will call "control phrases". At the head of the
procedure search we insert the instruction

if / > 1000 then goto control;

where control labels a section of the procedure similar
to the BIPs section, giving instructions to be obeyed for
each control number. Using the above examples, the
phrase definitions might be

<type declaration) : := [reaI|integer|Boolean]<name list)
<1007>;

<for list) : := <for list element)[,<for list>|]|
<1009>;

<statement> : := <non dummy statement>|< 1001);

In this case the label control could be followed by
instructions such as

if i = 1007 then addtopropertylist (1,7)
else if i = 1009 then

begin write text ("for list not recognized"); . . . end
else if / =1001 then

begin if not searchiterminator) then
begin writetext("statement not recognized");

. . . end;

end;
search :=true;

where the parameters of the procedure addtopropertylist
indicate the properties of the names to be adaed and the
position of the name list, and the integer terminator gives
the phrase number of the phrase definition

terminator : := end|else|<;);

Interpretation of the analysis record
Once the source string has been satisfactorily analysed,

we will in most cases want to interpret the analysis
record according to some given semantic rules, and thus
obtain a target string. To perform this "semantic
interpretation" we use another recursive procedure
(which we will call compile for the moment) which has
the following heading:

procedure compile(j,j); value i,j; integer i,j;

This procedure interprets the rth link of the phrase
detailed by they'th entries in the analysis record. Details
of this phrase are obtained using the instructions

j := link[i,j]; i := type\j\; k := cat[/];

The variables / and k now give respectively the type
and category of the phrase to which the original /th link
of the y'th entry referred. We can now give a separate
set of instructions for interpreting every possible type
and category of phrase, including, if required, inter-
pretation of the constituent phrases by recursive calls
such as

compile(2,j);

332

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

to interpret the second constituent. (Notice that the
value of j has now been updated to the position of the
current phrase we are interpreting in the analysis record.)
Thus if a particular definition of one category of one
phrase is

<operand><operator><operand>

and we wish to interpret this into reverse Polish notation
(with the operator following the operands) the necessary
instructions are:

compile^, j); compile(3,j); compile(2,j);

i.e. compile the first constituent, then the third, then the
second. The complete operation of this method of
interpretation is easiest explained by using examples
for illustration. We will use the additional procedures

write(i): to write the value of i as in integer
in the target string.

writetext("string"): to add the given string to the target
string.

copyphrase(j): to copy the phrase given by the 7th
entry of the analysis record to the
target string, i.e. to copy out that
part of the source string from posi-
tion from[j] to position to[j].

copylink(i,j): to copy the /th constituent of the
phrase denned by the 7th entry of
the analysis record to the target
string. This could be written copy-
phrase(link[i,j]).

Example 1: Translating ordinary arithmetic expres-
sions to Polish notation.

We will consider the restricted system given by the
phrase definitions

= x\y\z;1 <variable>
2 <primary>
3 <term>
4 <rae>

The procedure to translate any such restricted arith-
metic expression into Polish notation is

procedure Polish(i,j); value i,j; integer i,j;
begin integer k; switch s := vble,prim,term,rae;
j : = link[i,j]; i := type{j}; k := cat[j];
goto s[i];

vble: copyphrase(J); goto end;
prim: Polish{\J); goto end;
term:

rae: if &=1 then
begin if i=3 then writetext("*") else writetext(" + ");
Polish (l,j); Polish(2,j) end

else Polish(\,j);
end: end Polish;

Thus with an analysis record stored in type[l], cat[l],
etc., onwards, and with link[l,0] set to 1, the instruction

Polish(l,0);

will cause the Polish version of the source string to be
output.

Example 2: Algebraic differentiation.
Algebraic differentiation of the restricted arithmetic

expressions defined above can be performed if we
redefine a primary as

<primary> :: = <indept vble> | <dept vble> | <constant> |

where the rules for differentiation are
<indept vble> : derivative is 1
{dept vble) : derivative is D followed by the variable

name
{constant) : derivative is 0

We will name the procedure diff, and write down only
the instructions required for each value of i and k.
The ways of entering and leaving each such set of
instructions will be omitted. It is assumed that the
phrases <indept vble), <dept vble) and {constant) have
been defined elsewhere. Their numbers are immaterial,
since they are not required in the interpretation procedure.

i=2: k=l:writetext("V);
k=2: writetext("D"); copylink(l,j);
k=3: writetext("O");
k=4: writetext("C); diff{\,j); writetext(")");

i=3 or 4: k=2: diff(Uj);
i=3: k=\: diff{\,j); writetext{"*"); copylink{2,j);

writetext("+");
diff{2J); writetextC*"); copylink(\,j);

,-=4: k=\: diffiUj); writetext("+"); di

Example 3: Expansion of complex number expressions
Suppose we wish to interpret the source string

z := z*(z2+p);

as though z, z\ and z2 were complex, and produce two
assignment statements

zreal := zlreal*(z2real-\-p)—zlimag*(z2imag-t-0);
zimag :— zlreal*(z2imag-{-0)+zlimag*(z2real+p);

This process is of benefit to users who wish to write
expressions in complex arithmetic, and have this
"macrogenerator" translate them into the equivalent
ALGOL expressions acting on the real and imaginary
parts of each variable. We now alter the definition of
a primary to

{primary) : := {complex vble)|<real vble) |«4»;

and require two interpreting procedures to obtain the
real and imaginary parts of any given expression.
Naming these two procedures real and imag, the main
instructions of real are

i=2: k—l: copylink(\,j); writetext^'reaV);
k=2: copylink{\,j);
A;=3: writetextCT); real(\,j); writetext(")");

i=3 or 4:k=2: real(\,j);

333

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

i=3: /c=l: real(l,j); writetextC*"); real(2,j);
writetextC—");
imag(\,j); writetextC*"); imag(2J);

i=4: k = \: reaKUj); writetextC+"); real(2,j);

while the body of intag must include

i=2: k = \: copylink(\,j); writetex/(''imag'');
k=2: writetextC'O");
k=3: writetextCC)l imag{\,j); writetextC)");

i=3or4: k=2: imag{\,j);
/ = 3 : k = 1: real{\,j); writetextC*"); imag(2J);

writetextC+");
imag(l,j); writetextC*"); real(2,j);

i=4: k=l: imag(\,j); writetextC + "); imag(2,j);

Example 4: Evaluation of expressions
A different application of the analysis record is its use

to calculate the value of an expression given as a source
string. To do this, we alter the procedure heading to

realprocedure valueQj); value i,j; integer ij;
with the initial instructions as before. Using the first
set of phrase definitions (those of Example 1) the body
of the procedure (bearing in mind that it is now a type
procedure) must allow execution of the following
instructions:

of compilation into Usercode (the KDF9 assembly
language) we will illustrate the compilation of phrases
of the type

if<Boolean exprn>then<phrasel>else<phrase2>;

where <phrasel> and <phrase2> may be arithmetic,
Boolean or designational expressions, or statements,
depending on context. In Usercode, labels are written
simply (integer); and a jump on negative is, for example,
J87<Z;.

Using a non-local counter label to indicate the next
available integer for use as a label in the compiled
program, and representing true and false by 0 and —1
respectively, we compile this type of phrase using the
instructions

/ := label; label := label+2;
compile{\,j);
writetextCJ"); write{i); writetextC {Z;");
compile(2,j);
writetextCJ"); write(i+\); writetextC;");
write(i); writetextC;");
compile(3,j);
write(i+l); writetextC;");

This will produce as target string, with i = 95, for
example,

1 = 1:

i=2:
i=3 or 4
i=3:
j=4:

fc = 1: va/we
fc=2: va/«e
A : = 3 : vfl/we

value
k=2: value
& = 1: value
k — 1: value

= x;
= y;

= value{\,j);
= value{\,j);
= value{\,j)*
= value(l,j) •

value(2,j);
f value(2,j);

(compiled
J95<Z;
(compiled
J96;

95; (compiled
96;

Conclusions

Boolean exprn)

phrase 1)

phrase2)

This procedure can now be used to calculate the value
of any analysed expression for given values of the
variables x, y and z. Similar methods to those indicated
above can be used to calculate the value of the derivative
of the expression. Expressions such as

x+(if y<0 then y else z)

can be evaluated by including extra phrase definitions
for Boolean expressions, and having an extra procedure

Booleanprocedure bool(i,j); value /, j ; integer /, j ;

to calculate the value of the Boolean expressions. The
phrase definition

<arith exprn) :: = if <Bool exprn) then <arith exprn)
else <arith exprn)

would then have a corresponding entry in the procedure
value as
value := if bool(l,j)then value(2,j) else value(3,j)

Example 5: Compilation of ALGOL programs.
The actual compilation of ALGOL programs can be

performed using this technique, except that various
extra procedures are necessary, for example, to set up
the property list of a variable. To give a simple example

Of the five applications of syntax analysis and semantic
interpretation illustrated above, the second, third and
fourth are all in use at Nottingham. They incorporate
a full set of phrase definitions which allow any ALGOL
arithmetic expression to be used, including any of the
standard functions, and the use of conditional expres-
sions (or sub-expressions). For differentiation, the
derivative of abs is taken to be 1 /sign, to give a correct
result away from the origin, but fail if the derivative of
abs is requested at the origin. The functions sign and
entier are treated similarly. For complex macro-
generation, various extra complex functions are allowed,
as in the Atlas Autocode compiler on Atlas. The fourth
application is used in a program to read in functions,
and plot them on the Calcomp plotter, while producing
on the line printer a summary of the interpolated roots,
and the positions and values of any maxima, minima,
etc. One version reads in three-dimensional functions
and plots their projections. In addition to the ALGOL
standard functions, various others such as sigma for
summing series are available.

The authors wish to express their grateful thanks to
the Science Research Council for their financial support
during the work on this project.

(References overleaf)

334

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

Syntax analysis

References

BROOKER, R. A., MACCALLUM, I. R., MORRIS, D., and ROHL, J. S. (1963). The Compiler Compiler, Annual Review in Automatic
Programming, Vol. 3, London: Pergamon.

NAUR, P., et al. (1963). Revised report on the algorithmic language ALGOL 60, Computer Journal, Vol. 5, p. 349.

Book Review

Most Notorious Victory, by Ben B. Seligman, 1966. (New
York: The Free Press.)

"With the victory of the machine—a most notorious victory—
the attainment of human autonomy is at best moot." With
these words the last sentence of the book explains its title,
and encapsulates its theme. The author, an economist con-
cerned with labour relations, sets out to attack the facile
utopianism of those who see automation in offices and
factories leading inevitably towards a better life, where all
will have more goods and more leisure to enjoy them, and be
delivered from dirt, danger and drudgery in their daily tasks.

The book is divided into four parts, each having three
chapters. The first part surveys the developments of indus-
trialization, and in particular of computers listing their uses
from elementary book-keeping to artificial intelligence.
Readers of this Journal could skip Part 1, for it is clearly the
part in which the ratio of the author's knowledge to their
own is at its lowest. At times, data are regurgitated rather
than shown to be significant. For example, what does it
profit a layman to learn that "The transistor is a device for
transferring signals through a varistor", with no explanation
of varistor? The snark was a boojum, you see. Again, as
an example of the pitfalls of addressing expert and lay
readers simultaneously, after explaining what a computer
word is, and that it can represent either an instruction or a
quantity, the author adds, darkly: "There are, of course,
other systems as well, like those in IBM's 7080".

The second part of the book is devoted to demonstrating
by examples that in America automatic machines—computers
especially—are steadily permeating all areas of men's work;
and that, contrary to what is widely believed, their use is
giving rise to unemployment, even if this sometimes appears
as premature retirement or delayed recruitment of school
leavers. A surfeit of cases is quoted to illustrate employers'
callousness in their relentless pursuit of efficiency and pro-
ductivity.

The third part deals with various attempts to solve the
labour problems posed by automation: so far unsuccessful,
and in the author's view, likely to remain so. Neither the
trade unions' work-sharing and retraining, nor the employers'
insurance and relocation funds, nor the government's attempts
to increase demand or to help depressed areas, have been
effective. And, Professor Seligman clearly doubts whether
they or their economic advisers yet appreciate that their

methods are not geared high enough to tackle the speed of
technological change. The technologists and systems analysts
who promote this change are taken to task for leaving their
humanity at home when they go to work. The "neutral
artificers" of top management he calls them, whose interests
lie solely in efficiency and securing the widest scope for the
satisfactory display of their technical skills.

Professor Seligman would no doubt agree with that other
American critic of the affluent society that business has
become an end in itself; that giant corporations now foster
their own growth, in expanding the power and the careers of
their managers, and do so independently of their customers
and their owners alike; that in this situation technology acts
as a sorcerer's apprentice; and that those economists who
should be sounding the alarm are still reading the signs of
the times in terms of concepts appropriate to those halcyon
textbook days of free-markets and the barter of shoes for
cabbages.

In Part 4, the book restates its theme. Professor Seligman
challenges the comfortable concepts that automation is
only more of the old mechanization; that it creates more, and
more interesting, work than it destroys; that it will advance
so slowly that all will be well with a little redeployment and
the gentle expansion of leisure. This part is the most philo-
sophical, and in it the author shows his keen concern that
men's work should help to bring meaning to their lives, and
to integrate them into society. He notes that a man's work
is widely used as a indication of his worth and his status, and
argues that automation is a major threat in our age, by
depriving men of the opportunity to work—or to work to
create a product rather than to add infinitesimally to an
uncomprehended process. And, he is concerned that the
pursuit of affluence has dulled our concern for these things—
that having eyes we see not.

The author's method of piling example upon example,
reference upon reference (there must be more than a thousand
at the end of the book, and many ephemeral), may irritate;
and he would have done well to heed the advice of his country-
man Oliver Wendell Holmes that "A moment's insight is
sometimes worth a life's experience". Nevertheless, his sub-
ject is serious and seriously treated, and computer men
would do well to read this challenge to their almost automatic
assumption that computers are good, and more computers
better. F. J. M. Laver (London)

335

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/325/463854 by guest on 19 April 2024

