
A note on Backus Naur form

By J. S. RohT

Backus Naur Form cannot describe itself. This note describes a modification which gives it this
ability.

Backus Naur Form (BNF) has gained acceptance as a
language for formally describing the syntax of pro-
gramming languages, even to the extent of being used
as input for certain compilers. Pure BNF (Naur, 1963)
has generally been used in bottom-to-top algorithms.
Top-to-bottom algorithms, on the other hand, require a
reformulation of the metalinguistic formulae for their
operation. Let us consider the syntax of the ALGOL
<for statement). (Section 4.6.1 of the ALGOL Report).

<for list element) :: = {arithmetic expression) |
{arithmetic expression)
step {arithmetic expression) until {arithmetic
expression)
| {arithmetic expression) while {Boolean expression)

{for list) : := {for list element) | {for list) , {for list
element)
{for clause) : := for {variable) := {for list) do

{for statement) : := {for clause) {statement) | {label) :
{for statement)

For top-to-bottom recognition it is convenient to alter
the definitions so that

(i) premature recognition is prevented,
and (ii) infinite loops are avoided.
In the definition of {for list) the alternatives need to be
reversed so that the algorithm does not stop looking
after one {for list element) is recognized, and the com-
ponents of the (original) second alternative need to be
reversed to stop the algorithm looking for a {for list)
by looking for a {for list). The above definitions can
be rearranged in this reversed BNF as below:

{for list element) ::= {arithmetic expression)
step {arithmetic expression)
until {arithmetic expression)! {arithmetic expression)
while {arithmetic expression)! {arithmetic expression)

{for list) : := {for list element) , {for list)
| {for list element)

{for clause) ::= for {variable) := {for list) do
{for statement) : := {for clause) {statement)

| {label) : {for statement)

This is the form that is used in the Compiler Compiler
(Brooker et al., 1963).

The above considerations aside, BNF suffers from the
disadvantage that it cannot specify itself. This is
because the metalinguistic formulae involve special

metalinguistic symbols such as :: = , |, {and). This is
not merely an inelegance. As we have indicated earlier,
BNF is being accepted as an input by some compilers
and there is a strong case for embedding the special
purpose facilities in a common language rather than
purpose facilities in the common language rather than
producing special purpose languages. Thus we can
expect that it might be useful to allow some facilities of
BNF to be added to ALGOL. (They have already been
added to Atlas Autocode (Brooker, Morris and Rohl,
1967)). As it stands ALGOL with BNF facilities would
be capable of describing a host of languages including
normal ALGOL but excluding itself.

There are at least two solutions. One, adopted in the
Compiler Compiler, is to create special pseudo-metalin-
guistic variables such as {meta stroke), {meta left
bracket) etc. which implicitly describe the special
symbols. The appeal of this solution decreases as one
tries to expand BNF by use of further symbols as has
been done by, for example, Burkhardt (1965).

The second solution is to use brackets to surround
not the metalinguistic variables but the basic symbols.
(It is interesting to note that the English language uses
both solutions: specific sentences, words and even
letters are enclosed in quotes, but punctuation marks
are generally described by their names, colon, comma
etc.). In this case we need a symbol to indicate con-
catenation, and we have chosen the point. Thus the
syntax of the for statements can be restated, using the
reversed form:

for list element ::= arithmetic expression. {step).
arithmetic expression.

{until) . arithmetic expression | arithmetic expression.
{while) . Boolean expression | arithmetic expression

for list : := for list element.{,). for list | for list element
for clause ::= {for).variable.{:=>.for list.{do)
for statement ::= for clause.statement | label.{:>.for
statement

We have assumed in the above that ALGOL delimiter
words are regarded as one symbol. This is convenient
but not necessary since, for example, we could regard
{for) as being the concatenation {f> . {o> . {r>.*

* Alternatively we could allow the brackets to surround strings
rather than symbols. This solution, however, implies the use of
some arbitrary convention for dealing with strings containing a
right bracket.

Department of Computer Science, The University, Manchester 13.

336

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/336/463867 by guest on 13 M
arch 2024



Backus Naur form

The meta variables are more restricted than those of
the original BNF since they may not contain the meta
symbols. This is of minor importance since it does not
restrict the language being described. In any case most
users of BNF restrict themselves to purely alphabetic
meta variables, as we will here.

We can now define the metalinguistic formulae
themselves:

meta formula : := meta variable . < : : = > . definiens
definiens : := construction . < |> . definiens

| construction
construction : := component. < . > . construction

| component
component : := meta variable | « > . symbol. < »

The brackets are effectively a device for over-riding
any metalinguistic significance of the symbol they enclose.
Thus, there is no need to use the complicated meta-
linguistic symbols of BNF which were chosen because
they were unlikely to occur in programming languages.
We might, for example, replace the metalinguistic equals
by an ordinary equals, the vertical bar by a comma,
and the brackets by quotes, as in Atlas Autocode. Thus:

References

meta formula = meta variable.'='.definiens
definiens = construction.1,'.definiens , construction
construction = component.'.'.construction , component
component = meta variable , "'.symbol.'"

These modifications to BNF allow us also to describe
other metalinguistic languages such as, for example,
Burkhardt's. One convention is needed because Burk-
hardt uses bold-face type for basic symbols in his
definitions. We will use quotes here, though this
complicates the description.

meta formula = integer.meta variable.definiens
definiens = construction.'| '.definiens , construction
construction = quantified component.construction ,

quantified component
quantified
component

component,
' \ '."'.integer."'.component, 'A'.component

component = integer , '".symbol."', '* ' ,
'{'.definiens.'}1, 'el' , '#'. '".integer.'"

We could, of course, expand this modified BNF to
include Burkhardt's or any other facilities, but will not
do so, since it is beyond the scope of this note.

= component, '$'."'.integer.'

BROOKER, R. A., MACCALLUM, I. R., MORRIS, D., and ROHL, J. S. (1963). The Compiler Compiler, Annual Review in Automatic
Programming, Vol. 3, London: Pergamon.

BROOKER, R. A., MORRIS, D., and ROHL, J. S. (1967). Compiler Compiler facilities in Atlas Autocode, Computer Journal,
Vol. 9, p. 350.

BURKHARDT, W. H. (1965). Meta-Language and Syntax Specification' Comm. ACM, Vol. 8, p. 304.
NAUR, P. (Ed.) (1963). Revised Report on the Algorithmic Language ALGOL 60, Computer Journal, Vol. 5, p. 349.

Samuel N. Alexander
Samuel N. Alexander, who died of cancer at the age
of 57 at his home in Chevy Chase, near Washington, on
4 December 1967, was one of the true pioneers of the
computer field. In 1946, he became head of the newly
formed Electronic Computer Laboratory of the National
Bureau of Standards and, as such, was responsible for
advising the U.S. Government on the steps it should
take toward the acquisition of computers; in order to
obtain the background experience necessary, it was
decided to construct a computer for the Bureau. To
Alexander must go the credit for the fact that this
machine—known as the SEAC—was the first of the
American stored-program computers to be successfully
completed. It was also the best engineered of all the
very early machines. It served as a test bed for the
Williams tube memory and various peripheral devices,
besides doing much useful computing for the U.S.
Atomic Energy Commission and other U.S. agencies.

Sam was a good friend to me in the early years.
I always came away from a talk with him feeling stimu-

lated and instructed. He bubbled over with talk, but
in his judgement he was calm and cautious. I shall
always be grateful that I was able to meet Sam again as
recently as last August when we were both members of
a panel of computer pioneers at the 20th Anniversary
ACM meeting in Washington. He had been let out of
hospital for the day, and was looking terribly ill and
emaciated, but in every other way he was still the old
Sam we had all known. Many will remember his
remarks on that occasion, with his generous references
to the work of other groups.

Sam received a number of awards for his contributions
to the computer field, including two gold medals, and a
medal of the Swedish Royal Academy of Engineering
Sciences. The latest was the Henry Goode Memorial
Award, which was presented to him in Washington just
before the panel discussion at the ACM meeting. He
leaves a widow, a son, and two daughters.

M. V. Wilkes

337

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/336/463867 by guest on 13 M
arch 2024


