
A ring structure processor for a small computer

By N. E. Wiseman and J. O. Hiles*

A low-level data structure package for the PDP7 computer is described. Its principal features are
the compact form in which given structures may be set up and the wide range of formats permitted.
Ring structures are regarded as special cases of general list structures, and the package permits
the generation and processing of all legal list structures. It is, however, specifically oriented to a
certain class of uni-directional list and ring formats, and achieves particularly good space utiliza-
tion when they are used. Space statistics for the package are presented which, when compared
with the performance of more conventional schemes, show typical savings of about 30%.

Introduction
The work described in this note was carried out as part
of an on-line circuit design project now in progress
utilizing a PDP7 computer and 340 CRT display as an
interactive terminal on the Cambridge multiple-access
computing system operating on the Titan computer.
For reasons to do with operator convenience, it is required
to maintain a part of the data structure representing the
task in hand in the PDP7 as well as in the Titan. The
ring structure processor (RSP) was designed to facilitate
this while providing for simple translation rules between
the structures maintained in the two machines. The
structures running in Titan are represented in ASP
(Gray, 1967). Particular attention has been paid to the
shortage of core store in the PDP7, and processing time
and user convenience (in terms of freedom from pro-
gramming restrictions and side effects) have been
deliberately sacrificed in RSP to obtain economy in
storage space. The package is based on a modified
version of SLP, a simple list processor for the PDP7
(Wiseman, 1966), and adopts the same storage allocation
scheme.

Particular features of RSP
Data structures in RSP are constructed from data

cells and non-items each occupying one 18-bit word.
The successor word to a data cell is in the next higher
consecutive address while the successor to a non-item
is given by the address in the non-item itself. Non-items
are regarded as an implementation feature invisible to
the user, who simply accesses, via the package, sequences
of data cells. The 13-bit address field in each word has
a meaning determined by the remaining 5 digits according
to Table 1. The significance of the terms will become
apparent later.

When setting up a structure the package issues words
from free storage as required (including non-items when
necessary) to provide suitably connected sequences. For
example, the 3-atom sequence DOG may turn out in
many different ways such as those shown in Fig. 1,
depending on the available free storage.

In the first case shown in Fig. 1, consecutive words
happened to be issued from free storage and each word
was thus available for use as a data cell. In the last case,

* University Mathematical Laboratory, Corn Exchange Street, Cambridge.

338

5-BIT IDENTIFIER

00000
00010
f\f\ 1 i"\ A

00100
00110
xlxxx

10000

Table 1
13 BIT ADDRESS HELD

Atom
Atomic name

/ Address if non-zero
\ Terminator if zero (NIL)

Ringstart
Pending (garbage collection in

process)
Non-item

non-items were required to chain together pairs of
available words resulting in a LISP-like format of two
words per data cell. The typical case also shown in the
figure would be somewhere between these two extremes,
requiring sometimes one word, sometimes two, per data
cell. The successor to a particular data cell is known,
as in LISP, as its CDR (pronounced "cudder") and the
operations of forming and accessing successor cells are
performed by a CDR-function in the package in such a
way that the user is unaware of any intervening non-
items that may arise.

Lists are referenced indirectly by means of registers
(known as base registers) held outside the list storage
area. Symbolic names may be associated with these
registers using the PDP7 Assembler in the usual way.
Two classes of names are distinguished, temporary and
permanent. Lists are normally initiated by declaring
their names to the package, which remembers them for
later use by the garbage collector. These are the per-
manent names. It is the user's responsibility to leave
permanent names at the head of structures he wants to

D

D

G -

U ~"

o -> - G — •

' \

Fig. 1.—3-Atom sequences

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

preserve, as otherwise the garbage collector may return
them to the free list without notice. In processing a
structure additional names may be attached and moved
about the structure to speed access to particular areas.
These are the temporary names (known sometimes as
"bugs") and are not taken account of by the package in
determining accessible structures. Except in this respect,
however, the package does not discriminate between
temporary and permanent names and there is practically
no limit to the numbers of each which may be used.

The elementary operations of the SLP list package,
on which RSP is founded, enable lists to be initiated,
extended, edited and traversed. In RSP there are in
addition a number of subroutines for dealing with
certain formal structures made up from sets of elements.
These elements are simply lists in a particular format
which are used to manufacture the "building blocks"
required in a data structure for the formation of hier-
archical ring structures. The first few cells of an element,
known as the head, are used to hold the structural infor-
mation. Each cell in the head contains either the start
of a ring (ringstart) or the address of the next member
of the ring (ringpointer). The user may, if he desires,
ignore the actual connection mechanism used in RSP
and merely consider the elements of his data structure
as if they were composed of contiguous 13-bit registers.
The number of cells and their order in the head is arbi-

to rings

from rings

IZI

printname

Fig. 2.—Typical element

trary. Accordingly a mechanism is provided to define
the extent of the head and this function is performed in
RSP by a cell of type atomic name (abbreviated to atname)
which terminates the head. The value of this cell is
then used as the element name for all communications
within the program. The user, however, may associate
an arbitrary character string, known as the printname,
with each element and the printname is then stored in a
list referenced by the atname in the manner shown in
Fig. 2.

Owing to the fact that the head is not necessarily
composed of adjacent registers in store but is a one way
list, a pointer to the top of the element head is provided.
This pointer follows the atname in the element as shown
in Fig. 2. The list provided for user information (data)
about the element follows the head and the whole element

IGIRIAINIDIFIAITIHIEIRI/I

IMIOITIHIEIRH

ISIOINMM TS10M2I7I ISI0INI3M

Fig. 3.—Simple family tree

339

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

is terminated by a NIL cell in the usual way. In Fig. 2
a vertical bar in the left hand of a data cell indicates a
Tingstart and a vertical bar in the right hand of a data
cell represents the atname. Each ring formed from con-
nected elements has exactly one ringstart and the element
in which the ringstart is situated is said to own both the
ring and all other elements on it. Two kinds of data
may be associated with each ring:

(1) A name or type descriptor for the ring. This data
item is regarded as belonging to the ringstart cell
and is put into the data area of the element
carrying the ringstart cell.

.(2) An associator which gives a value to the relation-
ship between a ring member and the ringstart
element. Each ringpointer may have an associator
which is stored in the data area of the element
carrying the ringpointer.

Thus each ringstart or ringpointer in the head of an
'element may carry a qualifier, in the form of a name or
associator respectively in the data area. Since there is
likely to be more than one pointer in the head it is
necessary somehow to distinguish between the different
qualifiers. This is done by stipulating that when all
qualifiers are present, the package assumes that they
occur in the top of the data area in the reverse order to
the head cells they qualify. A simple counting operation
then allows the qualifier to be obtained for any head cell.
In cases where the qualifier is not explicitly required, it
may be omitted to save space but then, of course, it is the
.user's responsibility to administer the data area.

As a simple example of the RSP ring system, consider
the small fragment of family tree shown in Fig. 3. Inter-
connecting non-items are omitted for clarity, but other-
wise the conventions of Fig. 2 are adopted. It will be
seen how seniority of one member of a relational ring
is established over the others by means of the ringstart
cell. Thus FATHER "owns" his sons through the
brother ring into which they are tied by ringpointers.
Starting at any brother, father can only be found by
.going to each successive element until the ringstart is
•encountered, since it is only possible to traverse the ring
in one direction.

The data structure handling program is not in general
concerned with the user's name for an element and may
use the atname itself to identify the element. However,
the user will normally gain access to the element via the
printname since, as the system is implemented at Cam-
bridge, this is less likely to be relocated within the
computer core store. The first entry of the printname
list is therefore a pointer to the atname of the element.

Details concerning each member of the family tree
can be added in the data area of the element as a list
structure of any complexity, providing that the user is
prepared to administer it. In simple cases the qualifier
facility may be used with the particular list format already
described.

At this point it seems convenient to introduce a short-
hand notation for the pictorial representation of ring

N1 N1

C ±1

N2
N2

N3

N3

Fig. 4.—Ring structure notation

structures. The notation was originally proposed for
the representation of structures built with the ASP
system (Gray 1967: 1966), but is attractive for general
use in data structure representation. (RSP is a low-level
relative of ASP.) Boxes represent elements (actually
non-head parts of RSP elements), triangles are ring-
starts, and circles ringpointers. Lines represent travers-
able connections amongst the elements, those joining
with boxes being CDR chains (the heads of elements), the
remainder being CAR chains (the rings themselves).

A simple structure representing a particular inter-
pretation of a resistor-capacitor network is shown in
Fig. 4. The s-element is the top level representation
for the circuit and may be said to own it via the three
nodes NI, N2 and N3. These sons of s in turn own the
network branches (components) R and c and are there-
fore linked into a ring of s as brothers while being fathers
of other elements in their own right. To simplify the
diagrammatic representation of the structure, rings in
the notation are not shown completed but are terminated
by a small perpendicular bar. Thus NI, N2, N3 are on
the ring owned by s, while R is on two rings, one owned
by N 1 and one by N2. Information about the branches
and nodes (characteristics, position, etc.) could be con-
tained in the data areas of the respective elements.
However, this is not pertinent to the structural repre-
sentation and is not shown in the diagram.

Since elements are formed as CDR chains of data cells
they may be edited and extended freely using normal
list-processing methods. All allowable ring structures
are in fact perfectly legal list structures and may be
handled as such by the package. The view is taken that
ring structures are simply special cases of list structures

340

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

and the package has therefore been designed basically
as a list processor with ring handling attachments. In
particular the free storage is administered in the same
way as in LISP. Available registers are chained together
forming the free list from which data cells are issued to
the user as required. When the free list expires, the
structures accessible to the user (via his permanent
names) are examined and any space remaining is
chained up to form a new free list. This process,
known as garbage collection, is performed automatically
by the package when necessary and the user is normally
not aware of its occurrence. In RSP the garbage col-
lection routine is rather more involved than in the
conventional case since two sorts of garbage may have
to be handled. First there is the usual sort mentioned
above arising from words which have become inaccessible
to the processing program. Second there is what is
known as litter existing in the structure in the form of
chained redundant non-items (one non-item is always
sufficient to connect a data cell with its successor). This
litter arises during the processing of a structure and can
multiply without limit.

A number of possible side effects in the use of the
package should be noted. Names which are left attached
to a list which is being processed may get changed, dis-
connected, or set to "impossible" values (i.e. so as to
point to non-items). Such a situation may occur for
instance when the subroutine POP is used on a list. The
function of this subroutine is to remove an item from a
specified point and to "close up" the list. This is done
by copying the following cell into the one to be removed
and inserting a non-item into the next word pointing to
the remainder of the list. It will be appreciated that if
the list was originally composed of consecutive cells, a
cell will have been converted into a non-item by this
process so that any name set to this will now be pointing
at a non-item. There is, as in WISP (Wilkes, 1964), no
protection against side effects except careful programming.
They are, in the main, a direct consequence of adopting
a system which permits a multiplicity of names to coexist
on one structure.

The interpretation of words in the list area is deter-
mined explicitly by the 5 non-address digits in each word.
It is not permitted to infer the meaning from context
and there is thus no provision for handling arbitrary
18-bit user words within the data structure. When such
words are required they must be stored (by the user)
outside the list area and referenced indirectly from the
structure via atoms. An atom is thus regarded as either
a value or an indirect value whereas an address is always
an indirect data cell.

Implementation details

The user of the package will normally employ a
mixture of machine code orders and package calls in
forming and processing structures. He must thus
remain aware of the detailed arrangement of his data
and of the exact behaviour of the package in different
circumstances.

An area in core declared by the user is allocated for
the use of the package for list storage. A call to the
package (SETUP) is then made to initialize various settings
and form the free list, after which structure building can
begin. If, while processing a structure from within any
package subroutine, the free list expires, then automatic
garbage collection takes place in an attempt to form a
new free list. It takes place in three phases.

In phase one a pass is made through the allocated list
storage area and all litter items are disconnected.

In phase two each declared list is scanned and marked
by setting bit 1 in every word visited. A stack is used
to save the start and branch points of each list during
processing.

In phase three, a final pass through the list storage
area is made returning all unmarked words to the free
list and removing the marks.

If this is successful, the interrupted subroutine is
resumed and eventually control transfers back to the
user program in the usual way. The user is aware of
only the longer-than-usual time delay. If, however,
the branch list expires in phase 2 or if no garbage is
collected in phase 3, control transfers instead to a special
location where a user recovery routine may be entered
to attempt some restart process.

Usually one or more list names are supplied by the
user as parameters for each call to the package. These
names are handed over in the form of literals (on the
PDP7 as LAW PIG for the list named PIG etc.), the base
registers which are addressed by the names having been
assigned at assembly time in the form of unset variables.
In this way any group of up to 6 characters which forms
a valid unassigned name to the assembler forms also a
valid list name for RSP.

The contents of the base registers are addresses of
registers in the list area and are stored in the format of
address items (00100 in the 5 non-address bits). Opera-
tions such as CAR A := B therefore consist simply of a
copy

LAC B /Load accumulator with contents of B
DAC i A /Deposit accumulator as contents of contents

of A

Lists are terminated by a NIL data cell (100000) which
is supplied automatically by the package as required.
Names which are moved over the structure by the user
provide the normal means for him to inspect and write
his lists. A name which arrives on a terminating NIL
would ordinarily allow the user to unterminate the list
with some operation like DAC I<NAME> without the
package being able to stop him. In anticipation of such
action the package therefore arranges that, when it has
moved a name up to a NIL cell it extends the list with
an additional NIL terminator before returning control
to the user. Lists are thus always properly terminated
and the user is free to write in any cell, including NIL,
through a name.

The primary objective in implementing RSP was to
minimize storage requirements for a given structure

341

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

while retaining the processing flexibility of more con-
ventional schemes. With infinite core and a perfect
algorithm, structures could be built utilizing slightly
over one word per data cell. A conventional list pro-
cessor on the other hand would require exactly two
words per data cell. RSP structures would normally lie
somewhere between these two, although in particularly
unfavourable cases they could use considerably more
than two words per cell (until the garbage collector is
called, litter may accrue in the structure). Tests have
been made on the package to estimate its actual utiliza-
tion of space under typical conditions. Sequences of
elements of random length were created and dis-
connected in the presence of a growing list, whose words
were scattered through the list area, until the garbage
collector failed to retrieve any useful space. The length
of each element created was compared with the minimum
possible length (one word per data cell). The results
are shown in Fig. 5. Prior to the first entry to the
garbage collector length extensions of less than 25%
occur. After successive entries the space utilization
worsens, gradually at first, more rapidly later as the
chance diminishes of finding consecutive sequences of
registers. Some 10 or 12 collections occur before 100%
extension (the figure for a conventional scheme) is
passed, at which point roughly 90% of available space is
occupied by the scattered list. Now the package fails
even to find pairs of consecutive registers to form into
item/non-item units. However, in practice, it is very
unlikely that it would prove necessary to call the garbage
collector so often and to have to contend with such a
large and scattered list.

Facilities provided by RSP
The package, as written for the PDP7, is intended to

be assembled with the user's program. Calls which the
user's program makes to the package are in the form of
subroutine jumps, which appear in assembly code to the
user as <FUNCTION NAME). Calls are usually preceded,
and occasionally followed, by the name of a list which
is used as a parameter for that call. Some 25 calls exist
at the time of writing, providing simple list operations
(traverse to CAR, traverse to CDR, pushdown, etc.),
operations with elements and rings (form an element,
insert element in ring, find ringstart, delete a ring, etc.),
and operations which assist recursion in user programs
(enter a routine, exit a routine, send operand to stack,
etc.). Some choice in the use of the operations is pos-
sible. Element deletion, for example, is regarded as an
application-sensitive function and provision is therefore
made for a variety of deletion algorithms to be set up
by the user from basic routines in the package. The
need for different deletion procedures may be demon-
strated with the aid of the simple structure shown in
Fig. 4. Consider the node N2. If branch R or branch c
should be deleted, node N2 would remain as the termina-
tion point of the other branch, c or R respectively.
However, if both R and c were deleted, the node N2
would lose its significance and hence may be deleted as
well. On the structure shown this would be termed
"upwards" deletion and would correspond with the
removal of elements having no offspring (i.e. owning no
rings). Conversely, it is evident that the deletion of
node N2 would require the deletion of branches R and c
(since it leaves them incompletely specified) and this

PERCENT LENGTH

EXTENSION

*tu -

120-

100

80
m

60

40

20-

0 -

512 WORD

LIST AREA

i

1

I

1024
LIST

N A

AA

T
WORDi
AREA 9

I
VI

/J
^

.-entries to
garbage

2048 WORD
LIST AREA?

/

collector ]

/

v v

1 1

3072
LIST

V

WORD /
AREA f

f

H 1 1

64 128 192 256 320 384 448 512 576 640

NUMBER OF ELEMENTS CREATED
Fig. 5.—RSP space utilization

342

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

operation, known as "downwards" deletion, corresponds
with the removal of all descendants of a given element.
Provided only branches may be the subject of a deletion
call, upwards deletion will suffice. However, it is clear
that if nodes may be the subject, a "both-ways" deletion
is required. It is left to the reader to discover structures
which, in given applications, would require downwards
only deletion, or simple one-level deletion in which
descendants vanish only by "falling off" the accessible
structure. Any of these schemes can be implemented
by the user from RSP routines as required.

The debugging of a program which uses RSP is
assisted if the structures built by the program can be
inspected conveniently by the user. An experimental
program, known as The Entertainer, has been written
to display selected parts of an RSP structure on the
screen of the 340 CRT display connected to the PDP7
at Cambridge. Its action is as follows. The user calls
the Entertainer and supplies the address of any cell in
the head of the element at which he wishes to start
probing. A block representing the head of the element
is then displayed by the program at an origin situated
in the north-west corner of the CRT screen. A triangle
represents a ringstart in the head while a circle represents
a ringpointer. The atname is associated with the body
which is displayed as a rectangle. Fig. 6 shows a typical
structure as displayed by an interim version of the pro-
gram. A cross is also displayed initially at the top of the
block and the lightpen is sensitive to this (and nothing
else except a "light button") so that tracking may occur.
Thus the lightpen may be moved about on the screen
and, providing any part of the cross may be "seen" by
the pen, the former is repositioned to be centred on the
lightpen. The block in turn moves with the cross so
that it may be positioned anywhere on the screen by the
user. The user may now switch off the lightpen to
prevent tracking and switch it on again when he has
pointed it at a special stick protruding from the bottom
of the block (the light button). This causes the tracking
cross to disappear from the screen and the lightpen to
become sensitive to the sticks protruding from the cells
of the block. When one of these is "seen" by the light-
pen by pointing the latter at it, the stick and its cell are

Fig. 6.—The entertainer display

intensified on the screen and the program notes both the
cell in the data structure which has been selected and the
cell pointed at by it. The user can now examine the
contents of these using the PDP7 debugging program,
DDT. The user may change his mind as many times
as he likes by pointing at other sticks until a final choice
is made when the light button is again pointed at by the
lightpen. The program will now display the new element
at the end of the stick complete with a tracking cross and
a line joining it to the previous block, so that it may
now be moved about on the screen with the lightpen as
before, the interconnecting line being amended as appro-
priate. When stick activation occurs again, any stick
on any block may be selected and further blocks dis-
played on the screen to build up a pictorial data structure.
If the program detects that an element chosen for display
by stick selection is already shown as a block on the
screen, then instead of creating a new block (a duplicate),
an interconnecting line is drawn to the existing one.

Acknowledgements
The authors wish to acknowledge the assistance given

by Crispin Gray through many helpful discussions, and
by John Grant and Quentin Van Abbe with imple-
menting the package on the PDP7.

References
BOBROW, D. G., and RAPHAEL, B. (1964). A comparison of list-processing computer languages, Comm. ACM, Vol. 7, p. 4.
MCCARTHY, J. (1960). Recursive functions of symbolic expressions and their computation by machine, Pt. 1, Journ. ACM,

Vol. 3, No. 4, p. 84.
ROBERTS, L. G. (1964). Graphical communication and control languages, Lincoln Laboratory MIT Reprint MSI 173.
WILKES, M. V. (1964). An experiment with a self-compiling compiler for a simple list-processing language, Annual Review of

Automatic Programming, Vol. 4, Pergamon Press.
WISEMAN, N. E. (1966). A simple list-processing package for the PDP7, Proc. 2nd European Seminar, Digital Equipment Cor-

poration Users Society.
SUTHERLAND, I. E. (1963). Sketchpad, a man-machine graphical communication system, AFIPS Conference Proceedings, Spring

Joint Computer Conference.
GRAY, J. C. (1967). Compound data structures for C.A.D.—a survey, to appear in Proc. 20th Anniv. Conference of the ACM,

Washington.
GRAY, J. C. (1966). Revised specification for the Cambridge Data Structure Package, Privately circulated.
NEWMAN, W. M. (1967). A method of control for interactive programs. Privately circulated.

c 343

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

Ross, D. T. (1961). A generalized technique for symbol manipulation and numerical calculation, Comm. ACM., Vol. 4, No. 3,
p. 147.

KNOWLTON, K. C. (1966). A programmer's description of L6, Comm. ACM, Vol. 9, No. 8, p. 616.

Appendix 1

Operating the package

The package is supplied in a symbolic form ready to be
assembled with the user's program. It makes no
references to absolute addresses except for the default
settings of parameters which define the workspace and
list area. These parameters should normally be set by
the user program at run time prior to initializing the
package. They are

BEG address of start of list area (default setting 2000)
END address of end of list area (default setting 3000)

BOTN address of bottom of branch stack (default
setting 3001)

TOPL address of top of branch stack (default setting
3200)

ERR + 1 jump instruction to recovery routine (default
setting HLT).

N.B. ERR is a location in the package to which a sub-
routine jump occurs if some error is discovered.
BOTN and TOPL define working space for the
garbage collector and storage space for declared
names.

Calls to the package are in the form (FUNCTION NAME)
which assembles into a JMS (SUBROUTINE ADDRESS). Most
calls require one parameter, usually the name of a list,
and this is loaded into the accumulator in the form of a
literal LAW <NAME> prior to the call. Exceptionally a
subroutine may require two parameters and in this case
the second parameter is placed in the address following
the call, also in the form LAW<NAME>. The list of sub-
routines and calling sequences which follows comprises
the list of tested features at the time of writing. Further
high-level calls will be added as usage develops.

Call Effect

SETUP Initialize package. Form free list,
empty list of declared names, etc.

LAW <NAME> Initialize a list and attach to <NAME>.

INIT Add (NAME) to list of declared names.
LAW (NAME) (NAME) := CDR<NAME>. If an attempt
CDR is made to move past a NIL item the

chain is automatically extended. Exits
with LAW<NAME> in Ace.

LAW <NAME> A simple subroutine which follows the
CAR pointer given by <NAME>, chaining past

any non-items to the true CAR. There
is no test as to whether an atom is being
operated on.

LAW <NAME> A list is pushed down at the point speci-
PUSH fied by <NAME>, i.e. an element inserted

while the connections with the preceding
and following sections of list are main-
tained.

LAW <NAME> This pops up or removes an element
POP from a list at the point specified by

<NAME> while preserving the connections
between the rest of the list.

LAW (NAME) Enter routine called (NAME). Return
ENTER address is saved on stack called LINK in

package.

EXIT Exit from routine to address on stack.

LAC (OPERAND) Send operand to stack called LOP in
STAK package.

UNSTAK Load Ace. with operand from stack.
FEL Form an element with head length one.

Exits with ELI pointing to head, ELI in
Ace, null ring in head word and print-
name list empty.

LAC (N Form an element with head length N + 1.
FELN Exists with ELI pointing to head, ELI in

Ace, null rings in all head words and
printname list empty.

LAW (NAME) Form null ring with ringstart in (NAME),

NULLR Exits with LAW(NAME) in Ace.

LAW (NAMEQ) Insert ringpointer at (NAMEQ) in ring at
INSRT (NAMEP). Return does not skip over
LAW (NAMEP) second operand so LAW(NAMEP) is

replaced in Ace.

LAW (NAME) Insert a word at head of element. On
ADDW entry (NAME) is anywhere in header.

On exit (NAME) is on new word, new
word contains a null ring and Ace.
contains LAW(NAME).

LAW (NAME) Move (NAME) round ring to ringstart.
FINDS Exits with LAW(NAME) in Ace.

LAW (NAME) Move (NAME) down element to atname.
FINDN Exits with LAW(NAME) in Ace.

LAW (NAME) Find qualifier for headword at (NAME).
FINDQ Exists with value of qualifier in Ace. and

OP + 1 on address of qualifier. If
during traverse of data area a NIL cell
is encountered, it is replaced by the
atom ZERO (000000).

LAW (NAME) Delete a son ring, (NAME) on ringstart
DSON (i.e. father).

344

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

LAW <NAME>
DELB

LAW <NAMEX>
CONC
LAW <NAMEY>

LAW <NAME>
RIDS

LAW <NAME>
ELDS

LAW GRHA
ENTER
LAW <NAME>
LAW <FNl>
LAW <FN2>

LAW GRHB

ENTER
LAW <NAME>
LAW <FNl>
LAW <FN2>

LAW GRRA
ENTER
LAW <NAME>
LAW <FN>

LAW GRRB
ENTER

Delete element from brother ring at
<NAME>, i.e. destroy the father/son
relationship with the element containing
the ringstart.

Concatenate two elements, <NAMEX> and
<NAMEY> pointing to atnames, resulting
element to have atname from <NAMEY>.
Return does not skip over second
operand so LAW<NAMEY> is replaced in
Ace.

Destroy ringpointer at <NAME> together
with any redundant structure up to, but
not including, start element.

Destroy element on <(NAME> together
with any redundant structure up to, but
not including, start element.

Go round the head of the element
moving the cell pointer after applying
function. Execute function <FN1> if a
ringstart is encountered or function
<FN2> if a ring-pointer. <NAME> is on
any item in the head.

Go round the head of the element mov-
ing the cell pointer before applying
function. Function <FN1> is executed for
a ringstart and <FN2> for a ringpointer.
<NAME> is on any item in the head.

Go round a ring moving the cell pointer
on after applying function. <NAME> is
on the ring.

Go round a ring moving the cell pointer
on before applying function. <NAME> is

LAW <NAME>
LAW <FN>

on the ring.

Error recovery

In applications where core space is in short supply,
or where the parameters of the package have been
inappropriately set, frequent error exits from the package
may occur. In some cases, recovery is possible and the
link address in ERR will indicate what course of action
to try. A listing follows (address in octal):

INTT—JMS + 7 means no room on branch stack for
holding the name declared in an INIT
call. To recover try increasing TOPL and
returning with JMP I ERR.

EXIT—JMP + 3 means the link list is empty; i.e. more
calls to EXIT than to ENTER have been
made. This is a user error.

GARBI means the list storage area is fully
occupied with active lists. To recover
increase END, write zeros into the freed
space (i.e. from old value to new value
of END) and return with JMP I ERR.

GARB2 means no consecutive words were found
by the garbage collector in phase 3.
The chance of continuing with JMP I ERR
is small but non-zero. If it fails then
increase END, write zeros into the freed
space and return with JMP LIM+ 1.

MKI "i means no room on branch stack for
M K 2 / saving an address generated during

garbage collection phase 2. To recover,
try increasing TOPL and returning with
JMP I ERR.

Appendix 2

Examples of the use of RSP
As a simple example, consider the structure of Fig. 4.
Assuming that the elements have been created and that
their head words are identified with the list names s,
Nl, N2, etc., the structure could be set up as follows:

LAW c
INSRT
LAW N3
CDR
INSRT
LAW S
LAW C
CDR
INSRT
LAW N2
LAW R
INSRT
LAW N2
CDR
INSRT

/c on N3 ring

/N3 on s ring

/c on N2 ring

/R on N2 ring

LAW S
LAW R
CDR
INSRT
LAW N l
CDR
INSRT
LAW S

/N2 on s

/R on Nl

/NI on s

ring

ring

ring

(In practice, of course, list names would not correspond
with printnames but the procedure would be the same.)

As a further example of the use of the package, con-
sider the problem of element deletion. Upwards deletion
is provided in the package by the function ELDS. Down-
wards deletion can be carried out with a routine which
finds, and applies DELB to, all ringpointers in all
descendent elements. The basis of such a subroutine is
shown below in the form of two mutually recursive
traversing routines which together find and put on a
stack all ringpointers in all descendent elements. The

345

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024



Ring structure processor

calling sequence is LAC X, STAR, LAW HTRAV, ENTER with
x being anywhere in the head of the parent element.

/traverse head
/deposit accumulator as contents
ofY

LAW Y
HNDN

HTRAV, UNSTAK
DAC Y

CDR
CAR
LAC I Y

/move Y to top of head
/load the contents of the contents
OfY

AND (140000 /logic AND octal literal 140000 into
Ace.

SAD (140000 /skip if Ace. different from 140000
JMP . 10

SAD (40000
EXIT
LAC Y
STAK
LAW Y
CDR
JMP . —12

LAC Y

/jump if ringstart to 10th octal
location on

/exit if traverse complete

/save ringpointer on stack

/next in head
/loop, jump to 12th octal location
back

STAK
LAC Y
STAK
LAW RTRAV
ENTER
UNSTAK
DAC Y
JMP . —13

RTRAV, UNSTAK
DAC Z
LAW Z
CAR
LAC I Z
AND (140000
SAD (140000
EXIT
LAC Z
STAK
LAC Z
STAK
LAW HTRAV
ENTER
UNSTAK
DAC Z
JMP . —16

/save ringstart

/traverse ring

/loop
/traverse ring

/next in ring

/exit if traverse complete

/save ringpointer

/traverse head

/loop

Book Review
Machine Intelligence 1, edited by N. L. Collins and D.

Michie, 1967; 278 pages. (Edinburgh: Oliver and Boyd,
63s.)

This book reports the proceedings of the first Machine Intelli-
gence Workshop organized by Professor Donald Michie at
the University of Edinburgh in September 1965. Here the
term "machine intelligence" covers a wider field than the
better-known term "artificial intelligence". Heuristic problem
solving, analogies between human perception and machine
pattern recognition are there, but in addition there is also a
survey of mathematical methods for proving theorems about
particular programs, and papers on compiler-compilers.
There are seventeen contributions, far too many to summarize
individually. Work in the field can be roughly classified into
three areas, theorem proving heuristics and combinatorics,
information classification and retrieval, and extensions to
programming and display techniques aimed at improving
man-machine communications.

Work in theorem proving, game playing, graph theory,
and other combinatorial heuristics is well represented. Pro-
gress in the area has never been spectacular, and improved
algorithms are the usual result. An exceptional step forward
was the introduction of the Resolution Principle by J. A.
Robinson, and an excellent exposition of it is given here.
There is no paper dealing directly with information classi-
fication, storage and retrieval. At first this is surprising, for
none of the contributors seems unaware of the ultimate
importance of large scale, mechanized, data handling. Then
the reader begins to make guesses, but more of this later.

Better man-machine communication can take place at
many levels. The simplest level is to provide more effective

programming languages; the classic example here is the
development of LISP to program the Advice-Taker. Several
ideas for advancing compiler techniques are described here.
The next level is to make programming more flexible. This
can be done by giving the user an on-line console, and visual
displays, and then letting the computer answer back. Some
interesting, but limited, experiments are described. The
ultimate level is reached when the computer can respond to
voice, or visual, signals in a way resembling that of a human,
and several contributors discuss the difficulties and propose
solutions to some of them.

This book gives an excellent, fair, snapshot of work in the
field in the middle of the decade in Britain. There, at the
end, is the vital, and disturbing, qualification. Across the
Atlantic there is a ferment of work on man-machine com-
munication, much more extensive than that described here.
There is also a large effort in the field of information retrieval,
although a sobering re-assessment of its value took place
recently. The contrast is certainly not a reflection of a dis-
parate quality of thought, or energy; it is caused quite simply
by a lack of machines in Britain. Very few researchers in
Britain have the use of large, random access, files; even fewer
have interactive, personal, computer consoles. Surely, the
personal console will become the focus, and stimulus, of
work on man-machine communication for the next few years.
Adding a 1967 postscript to a 1965 meeting it is worth
noticing that Edinburgh University is indeed experimenting
with more than one system for personal consoles; but else-
where one must still note a severe general shortage of up-to-
date machines.

J. J. FLORENTOM (London)

346

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/338/463870 by guest on 19 April 2024


