
A computer technique for optimizing the sites and heights of
transmission line towers—a dynamic programming approach4

By G. Mitra and K. Wolfendenf

Given the survey data of a transmission line route and the choice of available towers of suspension
type and of angle towers a dynamic programming algorithm is described which chooses and sites
the towers (the location and angle of the angle towers being prescribed) in such a way that the
overall cost of running the line from one end of the route to the other, subject to all the established
design constraints, is a minimum. The EMA program has been successfully run at the University
of London Atlas Computer using exacting test data supplied by C.E.G.B.

Given the survey data of a transmission line route and
the choice of available towers of standard, i.e. suspension,
type and of angle towers, it is required to choose and site
the towers (the location and angle of the angle towers
being prescribed) in such a way that the overall cost of
running the line from one end of the route to the other
is a minimum. The basic algorithm uses Bellman's
"principle of optimality", the problem being considered
as one of routing in a finite connected network. The
profile of the line route is divided into a fine grid of
possible tower sites, and the elevation corresponding to
each allowable tower height at each such test site forms
a node of the network in which the routing algorithm is
recurrently applied. Subject to the constraints imposed
by ground clearance requirements, including the effects
of side slope and of special offending structures, single
and double span limits, and the weight-span to wind-span
ratio, the algorithm determines that connection between
one node and a preceding node of the mesh which mini-
mizes the cost of the line up to the current node. In this
way a family of solutions is generated linking the ter-
minal tower at the beginning of the line to the set of
possible towers at any test site, and when the end of the
line is reached the overall optimum solution is selected
and the corresponding linkage traced back to the origin.
Whenever the profile of a single straight line section is
such that no solution is possible over this section using
only suspension type towers, the program detects and
monitors this situation. It then returns to a determined
point on the line route from where it once again pro-
gresses, this time including the possibility of using an
anchor tower at any subsequent test site.

The tower spotting problem was first set by one of us
(K.W.) to a postgraduate student at the University of
Leeds Electronic Computing Laboratory in 1962. The
results of this exercise (Ranyard, 1963) and the installa-
tion of the Atlas Computer at the Institute of Computer
Science encouraged us to tackle the problem afresh in
late 1964 with a view to developing a standard program
suited to British practice.

The dynamic programming approach was proposed
by Shulman (1962) but he reported no implementation.
Essentially the same approach has been adopted by
Ahlborg and Palm (1962) whose program is now widely
used for optimum tower spotting in Sweden. Other
computer methods based on the established manual
method of moving a transparent sag template along the
profile have been successfully implemented (see Bartelink,
1964; Converti et al, 1962; Hoare and Morwood, 1964;
Popp et al, 1963); all report a saving in cost of both the
solution proposed and its derivation compared with
those of traditional methods.

List of symbols
Ahot The parameter of the parabola in which the

line is assumed to hang at 122° F, the statutory
design temperature. Under ice and wind
loading at 22° F it is Acoia.

x The horizontal distance from the beginning of
the line section.

s{(x) The maximum single span limit at x.
s2 The maximum double span limit.

Xtat An ordered set of test sites,
t̂ower An ordered set of tower sites,
x, ,- The distance from x; to the lowest point of

the span (x,, xi+l) at 22° F.
x_ j_ , The distance from x,- to the lowest point of the

span (*,•_,, x;) a t22°F.
z{x) The statutory clearance from the ground or

any other object at x.
Htower An ordered set of available tower heights.

d A horizontal displacement perpendicular to
the direction of the line at x.

v(x) The elevation above sea level of the lowest
conductor of the line at x.

u(x, d) The elevation above sea level of the ground or
any offending structure at distance x and
offset d.

C(x, h) The cost of erecting a tower of height h at
site x.

* This paper was first received on 29 Sept. 1966; the editors regret that it was not published earlier, owing to a misunderstanding,
t University of London Institute of Computer Science, 44 Gordon Square, London, W.C.X.
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Transmission line towers

Mathematical formulation
The problem can now be formulated as follows. To

choose an ordered set of tower sites

t̂ower = {x, | i = 1, 2, . . . M, and x,_, < x,}

from an ordered set of test sites

Xtesl = {Xj | j = 1, 2, . . . N, and Xs_, < A}}

where Xtovier c A"test, in such a way as to minimize the
cost function

M
C(xh //,), (i)

where the tower height A, at xt is selected from

-tf.ower = {Hk I k = 1, 2, . . . Q, and #fc_, < #*}.

If the foundation costs are neglected the cost function
simplifies to

M

22 (2)

and this is to be minimized subject to the following
constraints, where x0 = 0 and h0 is specified:

(a) a maximum single span constraint

x, - x,_, < j,(x,), i = 1, 2, .. . M, (3)

(b) a maximum double span constraint

xi+, - *,_! < 52, / = 1, 2, . . . M - 1, (4)

(c) an uplift constraint which sets a limit on the possible
angle of swing of the line under transverse wind
loading

*i, / + * _ ! , , > W(x,+ i - * , _ , ) , / = 1,2, ...M- 1,

(5)
W being a parameter of the line constants, and

(d) a statutory clearance constraint to conform with the
British Standard Specifications for overhead trans-
mission lines. Over ground with no side slope let
u(x, 0)=u(x), so that for a span (i, i -f 1)

v(x) = Ahol(x — xi)(x — x,+ 1)
vi+i — v,

+ ~ (x - x,) + v, (6)
* /+ i — xj v '

where x, < x < x/4.,, v(. = v(x>>, etc., and the actual
clearance

v(x) ~ M(X) > z(x). (7)

Whenever there is a side slope or an offending
structure offset to the line route u(x, d) =£ u{x, 0),
and the appropriate critical clearance must be
specially computed. Of course, it is only feasible
to ensure that the statutory clearance is not violated
at a discrete set of points, the clearance sites, along
the line route, but provided these sites are sensibly
chosen the likelihood of an invalid span being
accepted can be ignored.
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Fig. 1

This non-linear constrained optimization problem is
solved by dynamic programming. It is considered as a
routing problem in a finite network to which the principle
of optimality (Bellman, 1957) is applied. Let

F{Xj, Hk), j = 1, 2 , . . . N; and k = 1, 2 , . . . Q, (8)

be the cost (including the cost C{Hk) of the current tower)
of constructing a line from the unique starting node to
the tower of height Hk at site X, using an optimal policy.
The solution space is a two dimensional rectangular grid
of (N + l)g nodes in which, for feasibility, not every
node may be connected to every other node (Fig. 1).

The rule for assigning an optimal cost value F{XS, H,)
to any node (s, i) is to search for a linkage {s, t) ->• (j, k)
satisfying the constraints of the problem and such that

F(XS, H.) = C(Ht) + min F(Xj, Hk),
j = 0,\,...s-\\k=\,2,...Q, (9)

i.e. the minimum cost feasible linkage through a pre-
ceding node with determined optimal cost. This now
specifies an optimal policy up to the node (s, i). Applying
recurrence relation (9) repeatedly over the range
t = 1, 2, . . . Q fors = 1 , 2 , . . . N successively [fors = 0,
t is specified andi^A",,, Hi) = C(H,)] a family of solutions
is generated through to the end of each line section. It
only remains to find minf^N, Hk), k = 1, 2 , . . . Q,
and then to trace back to the origin those linkages
which make up this overall optimum solution.

The data layout
The computer program starts with a data processing

section designed to organize the raw input data most
suitably for the subsequent application of the main
algorithm. The line route is naturally divided into a
number of sections from one angle tower to the next,
and each such section is represented as one record in
terms of a card file or, when processed, one fixed length
record of a magnetic tape file.
(a) Card file. Every card in the card file has a special
character marker in the first column which serves to
identify the card type. This is followed by five numbers,
representing, in general, the elevations at left 40 ft, at
centre line and at right 40 ft, the clearance, and the
chainage. The "*" character indicates a card whose
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Transmission line towers

information refers to a location on the route used both
as a test site and as a clearance site, the "—" character
indicates a card relating to a clearance site only. Such
cards, arranged in ascending order of chainage, form
the bulk of each section record, but at the end of the
record there will be cards of two additional types. These
are " + " cards detailing elevations in the neighbourhood
of the last angle tower, necessary for the determination
of its foundation level, and " > " cards detailing the line
type, section number, angle of turn, etc.
(b) Magnetic tape file. On the magnetic tape file seven
blocks are assigned to each section record which itself
comprises test site, clearance site, and line detail sub-
records. A test site sub-record occupies two blocks and
consists of 2N alternate entries of chainage and the
corresponding centre profile elevations. To determine
the base setting levels of towers of different base widths
at a given site it is only necessary to evaluate a single
parameter relative to that site. This depends on the
elevations of the neighbouring points and its value is
computed by an interpolation routine, suitably scaled
down to a decimal fraction, and then tagged on to the
integral value of the site chainage. The clearance site
sub-record occupies the next four blocks and 500 words
of the seventh, the remaining twelve words being occupied
by the line detail sub-record.

The EMA program
The data transfer, computation and decision processes

are illustrated in the flow chart (Fig. 2) and its legends.
The computation progresses by unit increments in
s (loop 1) and t (loop 2), the indices of the current node,
and the search for the preceding connecting node is
carried out by adding unit increments to j (loop 3) and
k (loop 4), the preceding tower site and height indices.
These four loops constitute the core of the recursive
algorithm.

In Routine R8 any trial linkage is specified as a vector
Y(ji, y2, J3, J4, ys), where yu y2, y3, yA are the heights
at which the insulators and conductors are supported at
the previous and current towers and ys is the cost of
building a line optimally up to the previous tower plus
the cost of the current tower. This vector is fundamental
to the testing of the linkage for feasibility and optimality.
To facilitate the computation of its elements a pseudo
truth table is compiled, the entries being the algebraic
expressions for the vector elements determined by the
values of the relevant boolean variables. Boolean/arith-
metic expressions for the evaluation of the vector ele-
ments are synthesized from this table.

Optimality and sensitivity
The double span and uplift constraints (4) and (5)

imply that the decision at s may not be completely
justified unless the sub-optimals at feasible j < s are
also examined. Whenever such a constraint rules out
a trial linkage, it is necessary to examine the next sub-
optimal [or better still an ordered set of sub-optimals

(Bellman and Kalaba, I960)] associated with the pre-
ceding node in order to arrive at the true optimal solution
up to the current node. Although the need for and the
required order k of such sub-optimals cannot be pre-
dicted, they could be efficiently computed by a list
processing technique. If the alternatives offered by the
sub-optimals are to be considered, the network will lose
its ordered tree structure and the resultant program,
although powerful, will be extremely complicated.

It would appear a better strategy to make use of the
sensitivity of the solution to the fineness of the grid and
to seek to improve the solution by re-applying the
original algorithm to a perturbation of the first solution
on a still finer grid. In this way the elegance of the
dynamic programming search procedure is preserved.

To study the sensitivity of the solution to variations
in the average spacing between test sites a number of
line sections were run with both 100 ft and 50 ft spacing.
In all cases corresponding solutions had the same
overall optimum cost although some towers were
shifted by 50 ft and occasionally the heights of adjacent
towers were interchanged in one solution relative to the
other. One section of line was also run in the reverse
direction, fixing the type and height of the angle tower
at each end, and a solution identical with that for the
forward run obtained.

In practice the solution obtained by one application,
over a fairly fine grid, of the algorithm as described in
the preceding section has proved to be adequate and its
derivation economical of computer time.

Conclusions and results
It has been shown that the choice of the sites and

heights of the towers in the design of an overhead trans-
mission line can be posed as a combinatorial problem
and solved by a discrete deterministic multistage decision
technique.

The first rigorous test of the current program was made
on a twenty-mile stretch of Dowlais-Cowbridge 400 kV
supergrid line over hilly terrain with considerable side
slope. The solution was carefully examined by C.E.G.B.
from both an engineering and economic standpoint and
they reported a saving of 7 % on L2 type line and 5 %
on L6. The saving in cost per mile is thus of the order
of £1000, while the computing cost per run is only
£15 per mile. These results compare favourably with
the savings produced by other computer solutions to
the problem.

A subsequent original design exercise on a fifty-mile
stretch of 400 kV line has produced even more satis-
factory results, and plans to extend the scope of the
program are now in hand.
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Blocks
Bl Compute / and P the site indices over which the search

for a previous tower is spread in the band of feasible
connection.

B2 Initialize cost and solution markers before the search
from a new node is started.

B3 Compute store index for the node to which connection
is to be tried.

B4 Set the feasibility markers for the node solution and the
site solution.

B5 Store the solution temporarily.

Decisions
Ql Is there a change in maximum span in this section?
Q2 Is this connection worth trying, i.e. is there a feasible

solution up to this node ?
Q3 Is the present linkage of greater cost than a solution

already obtained?
Q4 Is the double span constraint (4) violated?
Q5 Is the uplift constraint (5) violated?
Q6 Is the clearance marker reset by RIO, i.e. is the clearance

(7) violated?
Q7 Is there a feasible solution at this node?
Q8 Should there be a monitor output at this stage ?
Q9 Is the end of line reached?

Loops
LI Change test site index 1(1 )N.
L2 Change current tower height index
L3 Change previous tower site index (
L4 Change previous tower height index

Subroutines
Rl Input the tower details.
R2 Generate the starting values controlled by input data.
R3 Bring down the section record from magnetic tape.
R4 Process the clearance-terrain data to transform them to

elevation and side slope parameters.
R5 Initialize the starting parameters.
R6 Modify the span limit as required.
R7 Decode a solution with "unpack" instructions.
R8 Compute the elements of the connection vector Y.
R9 Compute the sag curve at 22 F° and check the uplift

constraint.
RIO Compute the sag curve at 122 F° and check the clearance

constraint.
Rl 1 Re-store the solution prior to final storage.
R12 Mark the solutions to ensure the ordering of cost with

height.
R13 Stepwise monitor output of the solution.
R14 Store a solution with "pack" instructions.
R15 Trace back linkage and output solution for each section.

Fig. 2
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their critical appraisal of the solutions proposed. To
Mr. A. Wren of the University of Leeds we are indebted
for much helpful criticism of an earlier draft of this paper.
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Book Reviews

Introduction to Dynamic Programming, by G. L. Nemhauser
1966; 256 pages. (New York: John Wiley and Sons, Inc.,
64s.)

An Introduction to Dynamic Programming—The Theory of
Multistage Decision Processes, by O. L. R. Jacobs, 1967;
126 pages. (London: Chapman and Hall Ltd., 30s.)

For a long time the field of dynamic programming was
dominated by the pioneering works of Richard Bellman and
his colleagues at the Rand Corporation. With increasing
interest in the subject the range of authorship has widened
and in the last few years a number of good books have
appeared from other sources; the two under review are, in
their different ways, welcome additions.

Dr. Nemhauser is evidently an enthusiast for dynamic pro-
gramming and has written an outstanding book on both the
theoretical and computational aspects of the subject, aimed
at practising or aspiring operational research workers,
management and social scientists, and engineers.

After a brief introduction on mathematical model building,
the dynamic programming approach to optimization, and
optimization techniques in general, he sets out to show when
it is theoretically possible to use dynamic programming,
considering first single-stage decision problems, then deter-
ministic multistage problems with a finite number of stages
and their possible decomposition into an equivalent series of
single stage systems, and leading to the fundamental recursive
equations. The following two chapters (Basic Computations
and Computational Refinements, over 100 pages in all) show,
by considering various models, how to transform a system
model into multistage form and how to solve the recursive
equations most efficiently; they contain a wealth of useful

information, including three detailed flow diagrams.
The remaining chapters are Risk, Uncertainty, and Com-

petition, an extension to stochastic and competitive models
of the results obtained so far; Nonserial Systems, which
examines processes with branches and feedback loops; and
an elementary treatment of Infinite-Stage Systems. Finally,
there is a quick review of applications.

Many worked examples are included in the text but for a
proper understanding of dynamic programming some personal
computational experience is necessary and, for the serious
reader, there are nearly a hundred worthwhile exercises to
choose from.

This well written book, with its useful bibliography, appears
likely to remain my first choice on the subject for some time
to come and will certainly be recommended to my own
graduate students.

Dr. Jacobs' more modest book cannot help but suffer in
comparison with the work just discussed. Nevertheless it is
a good introduction to dynamic programming and must be
recommended as such. It is meant for undergraduates and
graduates new to the subject and presents the standard pro-
cedures, through a series of well chosen examples, in a
natural order—discrete deterministic multistage decision pro-
cesses, continuous deterministic multistage decision processes,
stochastic decision processes, and adaptive decision processes.
Unfortunately there are no exercises and the bibliography is
barely adequate, although a few additional references are
scattered throughout the text.

. Both books rely on only a moderate level of mathematical
attainment on the part of the reader.

K. WOLFENDEN (London)
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