The simulation of wave filters having polynomial transfer
functions on an analogue computer

By K. G. Beauchamp*

The simulation of filter characteristics is often required to form part of a signal processing
operation carried out on an analogue computer. By adopting a simplified approach to the problem
of direct mechanization of the polynomial transfer function involved, many of the required filter
characteristics can be realized by the use of standard analogue elements. Groups of potentio-
meter settings can be calculated and made available in tabular form to cover a wide range of
requirements. Matching of desired filter characteristics with analogue circuit configuration and
gain/potentiometer setting may be simplified by reference to these tables.

1. Introduction

The problems of simulation for wave-filters on general
purpose analogue computers has received scant attention
in the literature. Hansen (1966) gives what is perhaps
the most complete treatment at present available, but
the main body of his paper is concerned with the design
of filter networks to be associated with a single opera-
tional amplifier. Whilst this represents a considerable
economy in circuit components it is not a very con-
venient approach to the user of the big machine, who
generally does not have the engineering effort required
for the construction of the wide variety of networks that
would be needed in a range of signal processing problems.

The following treatment is concerned with the
simulation of filters from analogue computing elements
only and represents a completely flexible approach with
few operational limitations.

The simulation of the characteristics of wave filters in
an analogue computer involves the mechanization of a
transfer function of a polynomial:

G _bot bilplwd + (Plwd® + . .. + biplw)”
D" ay + ay(plw,) + axplw)? + . .. + alplw)
¢))
where a, and b, are constants determining the filter
characteristics

w, = 27 X filter natural frequency
p =d/dt.
Stability requirements dictate that the order of the
numerator must not exceed that of the denominator, and

a simplification which permits most theoretical filters to
be simulated is given below.

V
G(p) = Vz(p) =
1
1 + ay(plw) + ax(plw)* + . . . + aplw)”

This expression is still completely general and will
enable the characteristics of low-pass, high-pass and
band-pass filters to be obtained.

)

With one exception the filters described below exhibit
the transfer characteristics given in (2).

The exception is a time averaging filter and is described
by a form of (1) where the order of the numerator is
two less than that of the denominator and n is always
even viz.

G(p) =

2
[+ o1+ 4p0?] [ 1+ (525) (o’
1 + al(p/wc) + a2(p/wc)2 ce e Qp I(P/wc)n_l + (P/‘”c)"

(3
2. Simulation on the computer
Two forms of (2) have been considered. They are:
Voan(P/ wc)" =
Vi - VO —a VO(P/wc) - a2(p/wc)2 e a(n—- 1)(]’/‘%)("—1)
@

and a “nested form”:

VO = Vi - (p/wc){al VO + (p/wc)[aZVo
+ (plw)@sVy + . . . (plwda.VoD} (5

To illustrate the practical difference a fourth-order
filter is shown in Fig. 1(a) using (4) and Fig. 1(s) using (5).
The latter is of value in element economy where n is
large.

Referring to Fig. 1(a) a further dichotomy in circuit
arrangement is possible. It will be apparent from the
mechanization of (4) that potentiometers Qg to Qp; set
the frequency term directly (w,) whereas Qg is set to
the value w_fa,.

Also pog = a3, Poy = @3, Por = a; and po; = 1-0.
From this we see that po; is not required for direct
mechanization of (4). However, as will be seen later,
for some filter conditions involving many stages and
high @ values then this could lead to very large loop
gains.

With the phase-shift margin of the computer amplifiers
instability would be precipitated. To avoid this when the
coefficient/gain value becomes large all terms on the
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Wave filters

PO3

(b)
Fig. 1.—Simulation of a fourth order filter

right-hand side of (4) can be divided by a,; i.e. the
coefficient/gain values are normalized. This allows the
values of potentiometers Q, to be set to the same value
{w,) for frequency determination only, whilst potentio-
meters p, will be set to values

a;la, where a;=a,, a,a;,...04_y

and determine the characteristics of the filter. This latter
method is carried out in the design of narrow-band
Chebysheyv filters to be described later.

Equation (3) can be mechanized simply by its par-
titioned form (Noronha, 1964) where we write for (3)

VIVip) =

1
T axpleod) F axplen T - an- il T ()
©
and
Vol V(p) =
2
[+ Pl +3007) - [ 1+ (525) o]
1
)

Given ¥V, (6) is mechanized. The derivatives are then
used in the mechanization of (7) to derive the output V.
An example is given in Fig. 2 for an eighth-order filter.

3. Filter characteristics

Since all the derivatives are available in Fig. 1 then
the selection of the type of filter depends on the exit
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Fig. 2.—Simulation of an eighth order time-averaging filter
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Fig. 3.—Fourth order Butterworth filter

point chosen, e.g.

Vo output gives Low-Pass type
Vio output gives High-Pass type
Vi, output gives Band-Pass type

Vo, and V3, output gives Assymetrical Band-Pass type

Fig. 3 illustrates this for a fourth-order filter.

The slope of the L.P. and H.P. filter will be
6 dbjoctave/integrator used (i.e. 24 dbjoctave in this
example).

The slope of the symmetrical B.P. filter will be
6 dbjoctave/pair of integrators used (assuming » is an
even number).

The characteristics of the filter depend on the setting
of potentiometers Pn. Groups of settings can be cal-
culated to give the following filter characteristics:
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Wave filters
Table 1

Potentiometer/gain coefficients for a Butterworth fiiter

(@)
hIl ap az as as as as az as
1 1-000
2 1-414 1-000
3 2-000 2-000 1-000
4 2613 3-414 2-613 1-000
5 3-236 5-236 5-236 3-236 1-000
6 3-864 7-464 9-141 7-464 3-864 1-000
7 4-494 | 10-103 | 14-606 | 14-606 | 10-103 4-494 1-000
8 5-126 | 13-138 | 21-848 | 25-691 | 21-848 | 13-138 5-126 1-000
(b
n DENOMINATOR POLYNOMIAL
11 (1+p
2| (1 +1-414p + p?)
31 -+pQA+p+p)
4| (140-7653p + p»(1 4 1-8477 p + p?)
51 +pX +0-6180 p + p?)(1 + 1:6180 p + p?)
6 | (1 +0-5176 p + p»)(1 + 14142 p + p»(1 + 1-9318 p -+ p?)
7| (1 +p)(1 + 0-4449 p + p?)(1 + 1-2465 p + p*)(1 + 18022 p + p?)
81 (1 +0-386p + pH(1 + 1-1110 p + pA)(A + 1:6630 p + pH(1 + 1-9677 p + p?)
Butterworth This implies two parameters, ¢ and n which can be
The Butterworth function of order 7 is: adjusted to approximate to the ideal response. The
' gain over the pass band approaches unity not at zero
. 1 frequency but at discrete frequencies distributed over the
|1Z(j)? = T——= ®  pamd Y 1

and can be approximated by expanding the function and
taking n stages (ideally n = oo for perfect square L.P.
response).

Over the pass band w?" should approximate to zero
in range 0 <w <1 and infinity beyond this. The
Butterworth filter attempts this by arranging that its
first (n — 1) derivates are at zero at zero frequency. It
concentrates its approximating ability near w = 0. The
result is a filter of maximally flat low-frequency response
with good gain-v-frequency characteristics, approaching
the ideal for large values of n.

As nincreases, however, the transient response becomes
poor.

Chebyshev (see Guillemin, 1957)

Here a function F%(w) is put in place of w?" in (8) to
satisfy more closely the criterion given above.

. 1
1.€. lZIZ(jw)IZ =W (9)

354

The resulting response gives a sharper roll-off near the
cut-off frequency but the transient response is more
oscillatory than for the Butterworth. It is valuable as
a narrow band-pass filter where this oscillatory response
is unimportant.

Bessel (or Thomson)

This approximates the ideal phase-v-frequency charac-
teristic in a similar manner to that attempted by the
Butterworth in its amplitude-v-frequency response. In
the Bessel filter the first (2n — 1) derivatives are, with the
exception of the first, zero at zero frequency. Where
accurate phase response is required, or alternatively no
amplitude over-shoot, the Bessel filter would be chosen.

Paynter

The Paynter filter (Paynter, 1963) approximates to the
ideal phase-v-frequency characteristic in a similar manner
to the Chebyshev by matching the phase angle at specific
frequencies spaced throughout the pass band. Its
transient response is superior to the Bessel filter.
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4100
»200
4300
«400
4500
«600
+T00
4800
820
»8%0
4880
«880
900
«920
+9K%0
2950
4980
990

Table 2

Potentiometer/gain coefficients for a second order
Chebysheyv filter

1 K 2
-599 «199
« 794 «392
«905 «575
«966 «Tu3
«99% «894

4999 1.029

<989
«968
«963
2958
«952
«987
«9%1
«935
«929
»923
«916
913

K

44153
L.460
44557
L4.585
haiksl
ko381
k191
5.027
3.993
3.959
3.925
3.891
3.857
3.823
3.789
3.755
3.7
3.705

1,147
1.2u9

1.268
1.286
1.304
1.321
1.338
1.35%
1.370
1.385
1.409
1.407

K 2

8.804
10,640
11.871
12.812
13.568
1h,188
h.703
15,134
15.211
15.286
15.358
15.%28
15.495
15.560
15.623
15,688
15.742
15.77

R(OB)
2 0u3
4170
o314
2 645
1969
11335
14732
2,148
24233
2,319
23404
2,491
r21%-144
2,663
24750
2,837
24923
2,967

K 3

11.53%
h.629
16277
17.116
17.430
17.389
7.0
164681
16.582
16.480
164375
16,268
16.158
16,046
15.933
15.818
15.702

15,644

N= &
£ k1 n2
N N 2 <106 2,259  2.631
1.008 5.025 .200 2552 3.567
. .
.30 2,672 woet
2.02% 2,559 w403 2,715 w790
1.575 ‘.7"0 +500 2.697 5.238
800 2.644 5.613
14301 1.346 100 2.568 5,928
‘.1‘2 1.118 800 2.878 4,158
»820 2480 6.281
97 972 «BND 2.88) 6.288
-862 .812 «860 2.821 6,333
280 2.802  6.376
<7175 +801 +900 2,392 6an18
-760 .789 920 24383 4,459
) »9%0 2.383 4,498
$T85 -778 .960 2.323 6.536
.7!0 .161 «980 2,304 6,573
+990 2429% 42591
«717 «TI57
<703 +T48
&N «139
«678 730
2666 «T722
«655 «T15
649 «TN
Table 4
Potentiometer/gain coefficients for a sixth order
Chebyshev filter
K b4 K5 K 6 REDB} N
11.220 6.805 3.184 <043 1.305
16.719 9.576 60274 <170 T
21.049 11.553 9.192 FEELY - k96
24,674 12.760 11,880 Y1 H] «383
27.759 13.426 14.305 1969 «312
304395 13,708 16,456 14335 «264
32.645 13.719 18. 342 14732 «228
35,563 13,586 19.979 24148 202
34.911 13.465 20.280 24233 197
35.248 13,450 20,571 2,319 192
35.575 13.381 20,854 24404 <188
35.89) 13,318 21.128 2.491 =184
36.198 13.252 21.395 2,577 <180
35.494 13.182 21,653 21663 <177
36,782 13.110 21.90% 24750 <173
37.060 13.036 22.148 24837 <170
37.330 12.959 224385 24923 «166
37.861 12,920 22.500 21967 4165

Wave filters

355

Potentiometer/gain coefficients for a fourth order

Table 3
Chebysheyv filter
K3 [N RIDBY
1.709 +T96 (2 k]
2.508 1.569 «170
2.993 2.298 «37%
3.288 2.971 Y11}
3,847 3.577 «969
3.511 .05 1.235
-3.507 %,586 (PR F3
3.858 2,556 22188
3545 5.0M 2.233
3.830 S.iuk 2.319
1) 5.215 2,405
3,397 5.283 2.9
3.380 5.350 2.517
3.360 5.815 2.¢63
3,342 5.478 2.730
3.323 5.539 2.837
3.303 5.598 2,923
3.293 5.627 2,967

N2
2,765
1.696
1.291
1.078
948
<862
.802
757
<750
<783
736
730
728
<719
«713
+708
+703
701

N3
3.622
2.332
1.771
Totbd
1.218
1.057
«933
+835
.818
«801
+785
«770
155
«781
.727
oTi4
«701%
«695

N U

3.524
2,665
2.290
2.077
t.941
1.847
1.780
1.730
1.721
1.7
1.706
1.699
1.692
1.685
1.679
1.673
1.668
1.665

LI} N2
2.832 3.335
1.627 2.27%
1.155 1,843
2914 1.613
«T5% AR
452 1.364
=540 Y.292
496 1,240
«ha5 1.231
oBTH 1.222
by 1.218

. .«8%55 1.207

-hus 1.200
<436 1.193
428 1.186
418 1,182
412 Ta174
#4328 1.

NS
2.012
1.526
1.257
1.074
«939
833
T8
678
o£E5
853
642
«630
619
609
599
589
579
574

N3
2.187
1,598
1.302
1.107
1]
»853
«T6S
2892
«679
66T
+655
<683
632
621
«610

590
«58%

N 6
o318
«159
2109
<088
+070
«061
+ 055
«050
- 089
« 049
«0u8
<067
087
<086
<086
« 085
«085

+ 088
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Wave filters

Table 5
Potentiometer/gain coefficients for an eighth order

N Chebyshey filter

E [ 38} K 2 X3 K 4 K S K & K7 K8 RENB)Y 1 N 2 N 3 N U N S N 6 NT N8
«100 54120 19.0923 37.556 55.780 574517 50,251 254126 12,778 20u3 wu79 t.k87 2.939 4,365 ¥.5C1 3.933 1.9606 <078
»200 64426 21.802 wL.518 T3.589 Té.EEE 78.908 37.8%9 25.226 #1170 255 864 1.765 2.933 3.067 3.128 1.502 080
«300 64L93 23,625 87,897 87.262 ET.EBu8 192.528 45.9%6 37.014 «370 =175 «63E 1.294 2.358 2.372 2.170 1.2M) 027
» 800 b.u33 26.998 u9.358 97.929 93.549 122.83) 59.912 57.899 «6U5 <13 522 1.230 24044 1.661 2.5068 1.063 021
«500 6293 264092 L9.594 106.790 S6.786 140,424 53,700 57.74) « 959 109 o452 «859 V. B49 1.676 2,832 «930 <017
« 600 6.101 26.586 49.G19 1u.2m1 97.375 155.638 54.929 86,492 1.335 292 «UJ6 737 1.718 Toloh 2,341 826 <015
«700 5.878 27.727 47.912 120.536 56.429 168.T44 55.057 Tu. 174 1.732 019 «374 LY 1,625 1.300 24275 «TH2 013
« 800 5«60 284340 Lo NTH  125.863 FU kS 179,995 S%.429 80.858 24148 + 070 351 575 1.557 1.168 2.22% 673 012
«820 5.592 284455 46,160 126.827 G3.985 182.044 54,238 82.083 24233 «068 o347 0562 1.545 1145 2.218 5061 <012
« 880 54563 28.562 45.840 127.75¢9 93.482 184.03) 544225 83,274 24319 67 363 +550 1.53. 1.123 2.2 134 012
+ 860 5494 28.666 45.513 128.661 $2.958 185,957 53,797 B4, 629 2.u04 085 o340 #5139 1,524 1.101 2.203 «637 012
«080 Selbs 28.7606 b5.182 129.534 $2.415 187.823 53,554 854552 2.491 b4 «336 528 1.514 1.C80 2.195 2626 «012
«900 5.397 28.862 44,847 130.379 $1.B56 189.633 53.298 86.641 24571 <062 233 «518 1.565 1.060 2.189 «615 <012
«920 S5.3u8 284955 48.508 131.197 91.262 191.387 53.028 87,699 24663 061 «330 508 1,496 Y061 2.182 +605 +011
980 54300 29.0u85 48,166 131.589 50.695 193.088 52.748 88.728 24750 <050 327 Ju98 1.488 1.022 2.176 +595 «01
«960 5251 29.133 83,822 132.755 GCaCOT 194736 524457 89.723 2.837 059 «325 .uaa 1.u80 1.CCq 2.170 385 01
«980 5203 29.217 B3.476 133.497 £9.488 196.334 524157 90.690 24923 057 322 k79 1.u72 «SE7 2165 «575 011
+990 5.17% 29.258 43.303 133,859 €9.180 197.115 52,004 91163 24967 057 <221 LTS 1.468 578 2.162 «570 011

Time averaging filter

This is a filter derived from the Paynter which
approximates a finite averaging process:

5 =17 [ . (10)

The result is a combined low-pass and notch filter which
gives a high attenuation at the cut-off frequency with
minimum overshoot.

4. Calculation of potentiometer constants
(i) Butterworth

These have been calculated previously by Baum (1948)
and are reproduced in Table 1(a). The coefficients
correspond to those given in (4) and (5) and, since
a"=1 in all cases, they would be used directly as
fractional coefficient settings followed by the appropriate
number of gain decades.

Table 1(b) gives the factorized form of the polynomial
and is used in the derivation of Chebyshev constants as
described below:

(i) Chebyshev
The transfer function for a second-order or quadratic
Chebysheyv filter can be shown to be:
ok + wi
3 3 7 (11)
(Plwe)® + 20 k(plw,) + of + wk
where oy and wy are the roots of the Chebyshev
polynomial.
Hansen (1966) gives the relationships between the
roots of the Butterworth and Chebyshev polynomials.
If we take roots for the same angle § we can write:

0 = cos‘l(&?)

Gy =

where K,,,, is the Butterworth coefficient with n expressing
the order of the polynomial and m the number of the
factorized quadratic given in Table 1(h). Given the
Chebyshev constant € we can write:

1
Bre = - — sinh =" 1/e.

The Chebyshev roots are then defined as:

ok = sinh B.cos 8
wg = cosh B.sin §

(12)

If those values are substituted in (11) for each quadratic
factor and the product of the quadratics taken, then after
normalizing, an expression such as (2) can be obtained.
This will give the value of the coeflicients a, for even-
order filters and for different values of e.

A digital computer program has been written to carry
out these calculations, the results of which appear as
Tables 2, 3, 4 and 5. These tables give first the
potentiometer/gain coefficients K, to K,, corresponding
to the coefficients a; to a, in (2). The normalized
values are given as potentiometer/gain coefficients N,
to N,and correspond to the values a;/a, discussed earlier.

The two sets of tables are separated by a set of R(db)
values which are described later in the paper. Where
the normalized N values are used then the setting of the
first frequency-determining potentiometer (Qg in Fig. 1)
may be calculated from w /K, or wN,.

(iii) Bessel

The denominator polynomial function for (1), as
applicable to a Bessel filter, can be obtained from the
expression:

Fn(p/wc) = (p/wc)an—-Z -+ (2” - I)Fn-—l (13)

356
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Wave filters

Table 6

Potentiometer/gain coefficients for a Bessel filter
(a) Unnormalized

given that F(p/w.) = 1 and F\(pfw) = (p/w,) + 1.
Table 6(a) gives the coefficients of this expansion up
to the sixth order.
The large loop gains involved for orders >nr =4
render this method of doubtful value for stable simula-

n ao a a; as aq as ag tion on the computer at large values of n. An improve-
ment is possible if the coefficient values are normalized
1 1 1 with respect to the g, coefficient as shown in Table 6(5).
2 3 3 1 The first frequency-determining potentiometer will now
3 15 15 6 1 have to be set to a potentiometer gain coefficient of w®.qy
4 105 105 45 10 1 (a, taken from Table 6(a)). This implies a large gain
5 945 9451 420 | 105 | 15 1 localized in one or a few amplifiers preceding the
6 | 10395 | 10395 | 4725 | 1260 | 210 | 21 1 integrators, and the filter will remain stable for a higher
order of n.
(iv) Paynter
(b) Normalized These have been published elsewhere (Kohr, 1967)
and are reproduced in Table 7. The form of the transfer
nao|a a as a4 as as function is as (2).
11171 (V) Time averaging
2(1]1]0-3333 The form of the transfer function is given by (1).
3(1|110-4000(0-0667 The denominator coefficients are identical with those
411(1]0-4285]/0-0952(0-0952 given for the Paynter filter and can be taken from
5|/1/[1]0-4434(0-1011{0-0159{0-00106 Table 7. The numerator coefficients can be derived from
6|1]|1]|0-4546|0-1212]0-0202|0-00202 [0-000096 the multiplication of the terms given in the numerator
of (3). This has been carried out up to n = 8 in Table 8.
Table 7
Potentiometer/gain coefficients for a Paynter filter
n ap az as as as ags ay as
1 1-000
2 1-571 1-000
3| 2-145 1-865 1-000
4| 2-721 3-333 2-041 1-000
51 3-297 4-895 4-539 2-157 1-000
6| 3-874 7-001 7-363 5-755 2-239 1-000
7| 4-451 9-248 | 12-161 | 10-028 6-975 2-301 1-000
8| 5-028 | 12-005 | 17-533 | 18-800 | 12-833 8-198 2-348 1-000
Table 8 Only the even order polynomials are applicable in this
Potentiometer/gain coefficients for a time averaging filter simulation.
5. Measured performance
n b | b b b3 by bs bs .
A comparison between several four-stage low-pass
2 1 filters is shown in Fig. 4. An equal lag filter is defined
4 11 o 1 by the integer coefficients having equal spacing, e.g.:
6 | 1]0[1250] 0 |0-25 G — 1
8 | 10136100389 00277 P71+ 4p +6p* + 4p3 + p*
The superiority of the Butterworth in respect of its
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Wave filters
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Fig. 4.—Fourth order L.P filters
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1 PAYNTER

A
s

Fig. 5.—Fourth order L.P. filter response to +10v, 70 sec
pulse input

gain vs frequency characteristic may be seen in this
diagram.

The transient response is shown in Fig. 5, also for a
fourth-order filter. The Bessel filter is seen to give the
closest approach to the ideal Gaussian impulse response,
although very little overshoot is apparent with the
Paynter filter.

The Chebyshev low pass filter approaches the ideal
square response to frequency variation (Fig. 6) but is
subject to a ripple in the pass band of maximum
amplitude:

R = 20logo v/(1 + €%) dbs (14

This had been calculated and included as R value in
the computed Tables 2 to 5. Typical characteristics are
shown in Figs. 6 and 7. The latter gives the response

¢ EGUAL LAG
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+19
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- U}l

1 1

ol -2 3 4

[ Y s L It
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Fig. 6.—Fourth order Chebyshev L.P. filter

INPUT
STEP

TIME - BASE

— ls¢c = [Omm

R I R

E= = w2
Fig. 7—Fourth order Chebyshev L.P. filter (f, = 10 c/s)
response to step voltage input

to a step input waveform for different values of the
Chebyshev constant e.

A fourth-order time-averaging filter response is shown
in Fig. 8. This shows very good notch characteristics
at the cut-off frequency w.. When the filter forms the
feedback network of an amplifying circuit then a Q-
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Wave filters
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Fig. 8. —Fourth order time-averaging filter

factor at w, superior to that obtained by a Chebyshev
filter of similar order may be obtained.

The performance of bandpass filters of the fourth
order is compared in Fig. 9. The Q-factor of the filter
(w./bandwidth at —3 db points) is determined by the
order of the filter » and coefficient . This is shown in
the relationship given in Fig. 10. An extrapolated curve
is given for n = 8 since instability is likely to prevent
the realization of this filter simulation at the higher Q
values.
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