
A grading procedure for PL/1 student exercises

By J. F. Temperly and Barry W. Smith*

A procedure to supply test data for a number of undergraduate programming exercises in the
PL/1 language and check the validity of the programs is described. The procedure provides diag-
nostic information to the student and performs all necessary output, as well as maintaining complete
records of student performance on magnetic disc storage. The procedure differs from many
previous grading routines in being called as a precompiled library subroutine, and is the first known
grading procedure for PL/1. The initial set of class problems and specimen output listings are
appended.

In view of recent interest in what have become known
as "grading programs" (Perlis and Braden, 1965;
Forsythe and Wirth, 1965; Berry, 1966), the following
description of another such program successfully imple-
mented on an IBM System/360 Model 50 computer
may be of value. Whereas previous published work
has been almost exclusively for programs written in
ALGOL or its dialects, this is the first known grading
program for PL/1 exercises.

Beginning in the third term of the 1966 academic year,
introductory courses in digital computing have been
given as part of undergraduate units in Statistics and
Accounting at the Australian National University. The
PL/1 language (IBM Corporation, 1966) has been used
for both these courses and, especially for the longer
course for statistics students, considerable emphasis has
been given to the practical solution of problems.

A decision was made to use automatic grading by
computer of all student attempts at class problems, for
several reasons:

(i) the volume of work required, at least potentially,
for tutors to carry out the grading and associated
record-keeping;

(ii) the apparent difficulty of teaching input/output
sufficiently early in a course for students to begin
writing programs;

(iii) the ease with which input test values can be
supplied to all students and results printed under
control of a grading procedure; and

(iv) the intrinsic interest of the task.

While there are some obvious deficiencies in the PL/1
language in its present form, especially in relation to the
very complex set of rules governing assignment statements
and the evaluation of expressions involving data elements
of differing attributes, and while even more obvious
criticisms can be made of the efficiency of implementation
of the language in the early versions of the IBM compiler
for the System/360, the writers are convinced that the
general form of the language represents a real advance
on most previous languages. In particular, it is believed
that PL/1 is a good vehicle for undergraduate courses
in digital computing for the following reasons:

(i) The language is of very general applicability, and
is not specifically tailored to the needs of any
particular class of applications, whether scientific,
commercial, textual or symbolic. It is thus
equally apt for students in the physical sciences,
accounting, pure mathematics, statistics or lin-
guistics, these being the disciplines in which the
greatest interest has so far been expressed in the
undergraduate use of computers at this University.

(ii) If the intention is to teach more than mere coding
or programming techniques, the richness of the
language makes it particularly easy to illustrate
fundamental notions such as those of data repre-
sentation and structure, program structure, para-
metrization and recursion. No other language
readily permits as comprehensive a set of examples
as can be based on the use of PL/1.

(iii) The design of PL/1 permits the teacher to a very
large extent to select his own subset of the lan-
guage and to introduce new features and concepts
in the order he prefers.

(iv) The student who has mastered PL/1 should have
little difficulty in learning to use another pro-
cedure-oriented language (more readily than the
converse). This is especially relevant because of
the limited acceptance and availability of PL/1 at
present.

Since it was decided to use PL/1 for teaching purposes,
it was obviously desirable for the grading programs to
be written in the same language for maximum com-
patibility, and the use of PL/1 for these programs pro-
vided useful additional experience of the language in a
novel environment. The work described here represents
one of the earliest major tasks using PL/1 undertaken
at this installation. Few significant problems were
presented by the use of PL/1 for grading; the initial
difficulties encountered arose mainly from the use of a
restricted pre-release compiler and from initial errors in
system programs. On the other hand, the use of PL/1
for grading simplified the task in several ways, in parti-
cular the availability of a powerful means of creating
and maintaining random-access files. In addition, given

* Computer Centre, The Australian National University, Canberra, A.C.T. 2600, Australia.

368

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/368/463937 by guest on 19 April 2024

Grading procedure

that the exercises were written in PL/1, it was possible
to grade a mixture of problems, the test data and results
of which were in a variety of formats, including arrays,
structures, bit-strings and character-strings, as well as
scalar numeric values, without concern for PL/1 imple-
mentation conventions. The range of examples that
could be both coded and graded in an elementary course
was extended to include some involving extensive
character manipulation. In other words, there were no
restrictions on the range of possible student exercises
that could be given; in future, the set of exercises could
be expanded by inclusion of problems of any degree of
complexity, making explicit use of any PL/1 feature.
The only forseeable limitations are those which may
arise from the difficulty of checking the solutions to
some problems—a difficulty that is language-independent.

Outline of the system
Two types of test run are provided. Each student is

allowed an unlimited number of test or type "T" runs
(although the number is counted) but only one grading
or type "G" run for each exercise. Both provide test
data, but the data for "T" runs are not intended to be
exhaustive and do not cover all special cases.

The system to perform all the tasks associated with
student exercises has three main parts:

(i) Functions which are common to the checking of
all exercises, e.g. updating student records on
disc and timing of the execution of programs.

(ii) Functions specific to each exercise, i.e. provision
of data and the checking of results.

(iii) The summarization and analysis of records for
student attempts, both by student and by exercise.

All three have been to some extent implemented in PL/1
on the University's IBM System/360 Model 50, the
initial programs being compiled with a pre-release copy
of version 1 of the PL/1 compiler.

The first part of the design was satisfactorily realized
and presented no problems when put into use. How-
ever, at first only stream-oriented input/output was
available and the maintenance of records of student
performance on disc was unnecessarily slow. Record-
oriented input/output has since made possible sub-
stantial improvement in a second version of the system.

The routines common to all exercises perform the
following functions:

(i) checking of student number, exercise number and
run type (i.e., test or grading run), with provision
for an informative error message and job ter-
mination if these are invalid;

(ii) control of printer spacing for output (there is
provision for one, two or three output test sets
to be printed on a page, depending on the nature
of the exercise);

(iii) calculation and printing of the execution time
for each set of test data;

(iv) accumulation of the total time for each test or
grading run;

(v) checking, for grading runs, that there has been
no previous grading run for the same exercise for
the same student, and updating on disc the
number of test or grading runs for the student
and exercise; and

(vi) for grading runs, updating on disc the number of
supplied input data sets for which results were
correctly returned by the program under test.

The second part of the system was completed for an
initial set of fifteen different class problems of varying
complexity (shown in Appendix 1). The addition of
further exercises is planned. The general approach
adopted resembles that taken at the Carnegie Institute
of Technology for ALGOL exercises and described by
Perlis and Braden (1965).

Initially, both parts (i) and (ii) described above were
included in a single, large subroutine to be invoked by
the students' main programs, using a different entry
point for each exercise. This is perhaps the reverse of
what one might expect of a supervisory routine, but has
some advantages. If the supervisory routine performing
the grading were the main procedure to which students'
programs were supplied as data, not only would the
compiler itself need to be invoked as a subroutine of
the supervisor, but also problems of recovery would arise
if a student program terminated abnormally in execution,
a common enough occurrence. With the grading routine
invoked by each student procedure, however, normal
operating procedures can be followed; an abnormal
termination causes the normal monitor to proceed to
the next job, i.e. the next student program. Further, as
Forsythe and Wirth (1965) point out, if one has the
facility—available in PL/1 and FORTRAN but not
usually in ALGOL—of placing the grading routines in
relocatable object form in the system library, much
unnecessary compilation is avoided.

Implementing the grading routine as a procedure called
as a subroutine with appropriate parameters proved quite
satisfactory so long as it was INTERNAL to the student's
main procedure; however, because of an error in the
company's software, since remedied, the grading routine
could not at first be invoked successfully as an EXTERNAL
procedure at all of its entry points.

Only a limited amount of subsequent analysis of
records of student attempts was necessary for the first
course, and the output from a sample analysis is given
in Appendix 3.

The second version of the system which uses record-
oriented input/output was a little different in design.
While the student's program was still the main procedure,
the testing routine was broken into seventeen separate
EXTERNAL procedures called as subroutines, and these
were stored as a library of load modules (relocatable
binary object programs). There are thus now separate
subroutines for each class exercise and two which per-
form most of the functions common to all exercises.

369

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/368/463937 by guest on 19 April 2024

Grading procedure

The combined effect of using the additional PL/1
language features supported in the more recent compilers,
and of the redesign, was to reduce the time needed for
each student exercise by a factor of two. Part of the
improvement may be attributable to general improve-
ments in company software and to consequent reductions
in job step overhead time.

The grading routine
The groups of undergraduates taught vary widely in

programming experience. Some in fact are experienced
professional programmers doing part-time courses;
most have no previous computer experience. As no
previous experience was assumed, to avoid detailed,
irrelevant and confusing explanations of job accounting
conventions and the mechanics of grading, students are
provided with mimeographed sheets showing all job
control statements and any DECLARE and CALL statements
needed specifically for grading purposes. These differ
from exercise to exercise mainly in the number and type
of arguments to be passed to the grading routine; conse-
quently, a different entry point is used for each exercise.

For example, exercise 9 requires the determination of
the highest common factor and lowest common multiple
of two positive integers. Students are advised to include
in their programs the declaration—
DECLARE CHECK09 ENTRY (FIXED BINARY, CHARACTER(L),

FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN),
(N1,N2,HCF,LCM) FIXED BINARY;

This declares the required entry point (CHECKO9) to the
grading routine and the attributes of its parameters
(which do not otherwise concern the student), and the
attributes of the supplied test values (NI and N2) and of
the computed results (HCF and LCM).

In almost all cases the student's program, after any
initial steps, comprises a loop containing his algorithm,
and at the beginning of this there is a CALL to the grading
subroutine. In the case of exercise 9, students would be
told that this is to be—
CALL CHECKO9 (student-number,{'T'|'G'},Nl ,N2,HCF,LCM) ;
This supplies an initial set of test values (NI and N2) on
the first invocation, and also causes the result variables
(HCF and LCM) to be set to zero to avoid the correct
results being obtained by accident. At the end of the
loop, the student returns control back to the beginning,
i.e. to the CALL-statement. On the second and subse-
quent invocations of the grading program, all necessary
checking of the results is carried out, the results obtained
by the student are printed (and the correct results if
these were not the same), and another set of test values
is supplied if required—or, if all sets of data have been
processed, the program is terminated.

Thus the subroutine specific to each exercise, where
appropriate—

(i) provides test data for the student's solution;
(ii) sets all result variables initially to impossible

values to ensure that correct results do not arise
by accident;

(iii) prints the correct results for the test data; and
(iv) prints diagnostics and the student's results if

these differed from the correct results. (An
algorithm known to be correct is included for
each exercise. For example, in the case above,
the algorithm used in the grading subroutine
CHECKO9 is the well-known Euclidean algorithm
(Birkhoff and MacLane, 1953).)

Where appropriate the sets of input data for "G" runs
are designed to be "orthogonal" in the sense that each
set independently tests a separate boundary condition
or a general class of cases, and that collectively they
cover all relevant conditions that the student is expected
to allow for. Thus the CHECKO9 subroutine provides
the following test values—

Nl N2 HCF LCM

11
21
36
56
81
111

1
9
25
49
81
121

1
3
1
7
81
1

11
63
900
392
81

13431
This approach to the selection of test cases appears
appropriate for two reasons. First, the number of
correct sets of results obtained by a student can be used
as a reasonably fair indication of the merit of his solu-
tion, and avoids grading on an "all or nothing" basis.
If a student algorithm fails to compute the correct
highest common factor and lowest common multiple
when the two integers are equal or when one is unity,
but properly handles all other cases, he gains a score of
4/6. Secondly, "orthogonal" data sets reduce the number
of cases needed to test a solution. This is especially
important since a disc reference is needed after each set
of test data is used; if this were not done, and the disc
record were updated only at the end of all trial solutions,
information can be lost when one of the data sets causes
the student program to terminate abnormally, or if the
job time limit is exceeded. With only one "G" run
allowed for each student, this would be unfair.

Once the course has dealt with input/output features,
students are encouraged to attempt some program
testing of their own, by submitting problems to the
Computer Centre in the normal way for batch processing.
In this case they make no reference to the checking
routines, use their own test data and print their own
results. Once students are satisfied with their programs,
whether after one or more "T" runs or after their own
test runs or both, they must then submit them for
grading in the usual way. Type "G" runs must not
include any input/output statements (except in one
specific problem that requires the printing of a table of
constants in a suitable format).

Appendix 1 shows the set of exercises initially used,
and Appendices 2 and 3, respectively, show specimen
outputs from the grading routine and the analysis
routine for partially correct results. A copy of the
complete program can be provided on request.

370

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/368/463937 by guest on 19 April 2024

Grading procedure

Appendix 1

Initial set of fifteen student exercises (for statistics students)

Write PL/1 programs for the following:

1. Compute n\ (0 < n < 13).
2. Given a real value x (0 < x < 0- 5) compute

y = 1 + x + x2 + x3 + . . .,

continuing until the term added is less than 10~4.
(Do not for the exercise use the fact that y = (1 — x)~l.)

3. Given a real value JC (J JC | < 1), compute e~x from the
series

continuing until the term added is less than 10~4.
4. Compute the terms of the Fibonacci series

F(0) = 0, F(l) = 1, F{n) = F(n - 1) + F(n - 2)

for « = 1 to 40 and store in a FIXED BINARY (31,0) array.
5. Place the values of the first n prime numbers (n < 200)

in an array of FIXED BINARY (31,0) attributes.
6. Program to evaluate quadratics:

Given successive sets of constants An,Bn,Cn,
calculate

Yn =
 2

for x = 0 to 1 inclusively in increments of 0-1.
For each set of constants store the values of Yn as a
vector of 11 values (An,Bn,Cn and Yn are all to be assumed
FLOAT BIN.)

7. Given FLOAT BINARY values a, b, c, obtain the roots of
the quadratic equation

ax2 + bx + c = 0.

If they are real set a bit string of length 1 equal to 1. If
the roots are complex, set the bit string equal to 0.
(Note that it is quicker to obtain the value of the second
root by using the fact that the sum of the roots is —bja.)

8. Given two square matrices of dimension (10 x 10),
compute the matrix product and its transpose.

9. Compute the highest common factor and lowest common
multiple of two positive integers.

10. A customer tenders an amount A in either decimal or
£ s. d. currency for a purchase of value V, again specified
either in decimal or £ s. d. currency. Compute the
exact change in the appropriate currency which mini-
mizes the number of notes and coins. Do not assume
that the customer is either honest or conversant with the
currency laws. Maximum transaction is $1,000 or £500
and no halfpennies occur.

Input: a structure
1—INPUT (2) (Subscript 1 denotes amount tendered;

Subscript 2 the value of purchase)
2—CODE CHAR (1) (D=Decimal) (L = £s. d.)
2—AMOUNT IF DECIMAL FIXED DEC (6,2)
2—AMOUNT IF £ S. d.

3—POUNDS FIXED DEC (3,0)
3—SHILLINGS FIXED DEC (2,0)
3—PENCE FIXED DEC (2,0)

Output: a structure
1—OUTPUT

2—CODE CHAR (1) X = Satisfactory Purchase
* = Insufficient Tendered
Q = Amount Tendered not

in acceptable form
2—ARRAY (12)—all elements FIXED DEC (2)
Subscript 1 denotes no. @ S20

2 „ „ „ S10
3 „ „ „ S2
4 „ „ „ SI

,, J „ ,, ,, Jut.
6 „ „ „ 20c.
7 „ „ „ 10c.
8 „ „ „ 5c.
9 „ „ „ 2c.

„ 10 „ „ „ lc.
„ 11 „ „ „ 3d.
„ 12 „ „ „ Id.

Note: 1. If the currency tendered is not the currency of
the purchase price, the amount tendered must
be an integral multiple of 5 cents or 6d.

2. If change is required that is not an integral
multiple of 5 cents or 6d., it is given in the
currency of the purchase price.

3. The amount tendered must not be less than the
purchase price.

11. Given an array of 30 FLOAT BINARY values, compute their
mean, standard deviation, variance, skewness and
kurtosis. Store these values in the above order in 5
successive locations in an output FLOAT BINARY array.

12. Given the x and y co-ordinates of two points Py(xx,y^),
P-fcc^y-L) which are opposite vertices of a square, deter-
mine whether a third point Pi(x$,y$ is contained within
the square, is on the square or is outside the square.
Output a single CHARACTER

(I = inside, O = on, E = outside).
13. Using your own output statements, construct a table

showing for values of n = 0,1,. . ., 10 the following
functions:

n, n2, n\,

e-"''^(m= 1,2,... 9).

(For checking of your program, store the results in an
array of dimension (11,12).)

14. Given three fixed integer decimal values which respec-
tively represent day, month and year (e.g. 14, 7, 1946
might represent your birthday) for any date since the
inception of the Gregorian Calendar until the year 9999,
determine the day of the week and output a single decimal
integer value (0 = Sunday, 1 = Monday,. . ., 6 = Satur-
day, 9 = invalid date).
The day, month and year will be the first three locations
of a FIXED DECIMAL array and the result is to be stored in
the fourth location of that array.
(Every year which is exactly divisible by 4 is a leap year,
except for those divisible by 100 which are not, excepting

371

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/368/463937 by guest on 19 April 2024

Grading procedure

again those divisible by 400 which are leap years. You
need to know also the day of the week for at least one
date.)

15. You are given a piece of natural language text as a
PACKED array of 300 single characters. The characters
may include any letter of the alphabet, blanks or the
punctuation marks full stop, comma, semi-colon or
apostrophe. Words are preceded by blanks (except for
the first word) and followed by a blank, full stop, comma
or semi-colon. Words may contain an apostrophe.

Sentences conclude with a full stop,
of—

Count the number

(1) Sentences.
(2) Words.
(3) Occurrences of the word "I".
(4) Occurrences of the letter "I".
(5) Occurrences of words beginning with "I".

If any vowel occurs more frequently than "I", output it
as a single character, else output "I".

Appendix 2

Specimen output from the grading routine

EXERCISE 2 TABLE OF FIRST 1 5 0 PRIMES
STEP TIME 3 • 4 0 0 SECONDS
PROGRAM CORRECT LAST STEP
CORRECT RESULTS ARE

2
31
73
127
179
233
283
353
419
467
547
607
661
739
811

3
37
79
131
181
239
293
359
421
479
557
613
673
743
821

5
41
83
137
191
241
307
367
431
487
563
617
677
751
823

7
43
89
139
193
251
311
373
433
491
569
619
683
757
827

11
47
97
149
197
257
313
379
439
499
571
631
691
761
829

13
53
101
151
199
263
317
383
443
503
577
641
701
769
839

17
59
103
157
211
269
331
389
449
509
587
643
709
773
853

19
61
107
163
223
271
337
397
457
521
593
647
719
787
857

23
67
109
167
227
277
347
401
461
523
599
653
727
797
859

29
71
113
173
229
281
349
409
463
541
601
659
733
809
863

EXERCISE 5—COMPUTE N FACTORIAL
STEP TIME 0 • 0 2 0 SECONDS
PROGRAM CORRECT LAST STEP
CORRECT RESULT IS 2 FACTORIAL = 2

STEP TIME 0 0 2 0 SECONDS
PROGRAM TESTED GAVE INCORRECT RESULT 5 FACTORIAL = 0
CORRECT RESULT IS 5 FACTORIAL = 1 2 0

STEP TIME 0 • 0 0 0 SECONDS
PROGRAM TESTED GAVE INCORRECT RESULT 8 FACTORIAL = 0
CORRECT RESULT IS 8 FACTORIAL = 4 0 3 2 0

TOTAL TIME USED BY PROGRAM TESTED = 0 • 0 4 0 SECONDS

EXERCISE 10—BUSINESS TRANSACTION PROBLEM
WARNING—NO CHECK IS MADE THAT INPUT DATA VALUES ARE UNCHANGED
STEP TIME 0 • 0 2 0 SECONDS
PROGRAM TESTED GAVE INCORRECT RESULT
CHANGE MADE UP AS FOLLOWS

0 x $20, 0 x S10, 0 x S2, 0 x SI, 0 x 50c, 0 x 20c, 0 x 10c, 0 x 5c, 0 x 3D, 0 x 2c, 0 x lc, 0 x ID
TRANSACTION RESULT CODE = X
CORRECT RESULTS ARE
CHANGE—MADE UP AS FOLLOWS
19 x $20, 1 x $10, 2 x $2, 0 x $1, 0 x 50c, 2 x 20c, 0 x 10c, 1 x 5c, 0 x 3D, 0 x 2c, 1 x lc, 0 x ID
TRANSACTION RESULT CODE = X
INPUT DATA
PRICE = SI05-54 TENDERED AMOUNT = $500-00

372

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/368/463937 by guest on 19 April 2024

Grading procedure

STEP TIME 0 • 0 2 0 SECONDS
PROGRAM TESTED GAVE INCORRECT RESULT
TRANSACTION RESULT CODE = Q
CORRECT RESULTS ARE
CHANGE—MADE UP AS FOLLOWS
0 x S20, 0 x S10, 2 x S2, 0 x SI, 0 x 50c, 2 x 20c, 0 x 10c, 1 x 5c, 0 x 3D, 0 x 2c, 0 x lc, 1 x ID
TRANSACTION RESULT CODE = X
INPUT DATA
PRICE = STG 5 2 / 1 5 / 5 TENDERED AMOUNT = S 1 1 0 0 0

STEP TIME 0 - 0 2 0 SECONDS
PROGRAM CORRECT LAST STEP
TRANSACTION RESULT CODE = Q
INPUT DATA
PRICE = STG 5 2 / 1 5 / 5 TENDERED AMOUNT = SI05 "54

STEP TIME 0 • 020 SECONDS
PROGRAM CORRECT LAST STEP
TRANSACTION RESULT CODE = *
INPUT DATA
PRICE = STG 5 2 / 1 5 / 5 TENDERED AMOUNT = S 1 0 0 - 0 0

TOTAL TIME USED BY PROGRAM TESTED = 0 • 0 8 0 SECONDS

Appendix 3
Specimen analysis by student

STUDENT NUMBER 2

EXERCISE
NUMBER

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

NUMBER OF
TEST RUNS

NO ATTEMPT
NO ATTEMPT

5
1

NO ATTEMPT
NO ATTEMPT

2
1

NO ATTEMPT
NO ATTEMPT

2
3
3
1
1

SCORE ON
GRADING RUN

RAW %

NO ATTEMPT
NO ATTEMPT

5 10000
5 5000

NO ATTEMPT
NO ATTEMPT

3 10000
NO ATTEMPT
NO ATTEMPT
NO ATTEMPT
NO ATTEMPT
NO ATTEMPT
NO ATTEMPT
NO ATTEMPT
NO ATTEMPT

TIME USED
GRADING RUN

SECONDS

0 0 0
0 0 6

0 0 1

COMMENTS

SUMMARY—STUDENT 2

NO ATTEMPT MADE TO TEST-RUN 6 EXERCISE (s)
12 EXERCISE (s) NOT GRADED
AGGREGATE SCORE FOR 3 EXERCISE (s) = 13
PERCENTAGE SCORE FOR 3 EXERCISE (s) = 7 2 2 2

References
BERRY, R. E. (1966). Grader programs, Computer Journal, Vol. 9, p. 252.
BIRKHOFF, G., and MACLANE, S. (1953). A Survey of Modern Algebra, New York: Macmillan, pp. 16-20.
FORSYTHE, G. E., and WIRTH, N. (1965). Automatic Grading Programs, Comm. A.C.M., Vol. 8, p. 275.
IBM CORPORATION (1966). IBM Systeml36O Operating System: PL/1 Language Specifications, IBM Systems Reference Library,

Form C28-6571-4, New York: IBM Corporation.
PERLIS, A. J., and BRADEN, R. T. (1965). An Introductory course in computer programming, Monograph No. 7—Discrete System

Concepts Project, Pittsburgh: Carnegie Institute of Technology.

373

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/368/463937 by guest on 19 April 2024

