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1. Introduction
Considerable interest centres at the present time on the
application of alternating direction implicit (ADI)
procedures to the numerical solution of elliptic systems
of equations (see for example the excellent book of
Wachspress (1966)). Under model problem conditions
such methods have very rapid convergence rates. It is
the purpose of this note to show how such convergence
rates may be improved on by building into the ADI
method an acceleration procedure based on the use of
Chebyshev polynomials.

In Section 2, the Chebyshev semi-iterative procedure
is summarized; a fuller account may be found in Varga
(1962). In Section 3, the ADI process is denned.
Section 4 contains the new process applied to an ADI
procedure with a constant acceleration parameter, whilst
in Section 5 this new process is generalized to the
important case when the ADI procedure has a cycle of
acceleration parameters. An example is given in
Section 6 where this process is applied to solving
Laplace's equation by two well-known methods.

In Section 7 a more efficient version of the procedure
outlined in Section 4 is derived. This procedure is of
general value.

2. Chebyshev semi-iteration
We shall be interested in solving the linear matrix

equation
Ax = b (2.1)

where the matrix A is symmetric and positive definite.
Equation (2.1) may be solved by an iterative procedure
of the form

+g (2.2)

where the matrix M is a convergent symmetric matrix
(i.e. p{M) < 1 where p{M) is the spectral radius of the
matrix M). An acceleration process can be applied to
(2.2) in general, but we shall restrict ourselves to a
consideration of (2.2) when the eigenvalue spectrum of
the iteration matrix M satisfies

—p (2.3)

where \M — Am/| = 0, and p = p(M). Then, the
Chebyshev acceleration process takes the form

where the acceleration parameters ws are denned by

w,, , = | l T / = 1, 2 , 3 , . . .

(2.5)

so that 1 < Wj < 2. A fuller account of the derivation
of this process may be found in Varga (1962). Moreover
the spectral radius of the process (2.4) may be shown to
be

\\PJM)\\ = 0" - (2-6)

where w is the limit of the sequence denned by (2.5),
that is

3. The ADI procedure
Let us now define our ADI procedure for the numerical

solution of (2.1). We shall impose model problem
conditions, that is, assume that there exists a decom-
position of the matrix A in the form

A = H+V (3.1)

where H and V are symmetric and commute. The
Peaceman-Rachford ADI iterative process for solving
(2.1) is given by

[rj +

[rj +

= [rj -

= [rj -

+ b
+» + b

(3.2)

(3.3)

where rm is an acceleration parameter, and / is the unit
n X n matrix. Elimination of x<-m+i) from (3.2), (3.3)
gives

[rj + H][rJ + K]x('»+')
= VJ ~ H] [rj - V]X™ + 2rmb (3.4)

which is equivalent to the iterative process

{[rj - H][rJ - 2rmb). (3.5)

An alternative splitting to (3.2), (3.3) of the Peaceman-
Rachford procedure is given by

[r = [rj-

x(m+i) __ ivm[A/x(m) + g] + (1 — H ' J * ' * " " (2-4) [
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X™ + b
- [rj-

(3.2)

(3.6)
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and it will in fact be this form of the splitting which we
shall employ later.

For the ADI process (3.5) to converge we require that
the spectral radius of Tm (denoted by p(Tm)) be less
than one in modulus, where

Tm = [rj +V]-1 [rj + H]-*[rj-H][rj- V].
(3.7)

The eigenvalues of the matrix Tm are of the form

- YJ

where
Hz = A,z, Vz = yjz since HV = VH.

If the parameter rm is allowed to vary from one appli-
cation of (3.5) to the next, we must then ensure that

P ( II Tm) < 1 where K is the number of parameters
\»=i ' K

rm. The eigenvalues of the matrix JJ Tm are then of the
form m=l

X m ~

The sequence of parameters {rm} are chosen to minimize

the spectral radius pK = pi Yl Tm). This leads to a

Chebyshev minimization problem and it follows that

K-PK PK<\ (3.8)

We shall not state here as to how the minimization is
effected and the sequence of parameters obtained but
refer to the exact solutions given in Wachspress (1966).
The cycle of the parameters {/•„,} is repeated until con-
vergence is achieved. We have now defined our ADI
process.

4. Acceleration of stationary ADI process
In this section we will introduce a new process which

combines the procedure in Section 2 with the ADI
method in Section 3, restricted to the case of a single
ADI acceleration parameter (K = 1).

For the ADI method (3.5) the Chebyshev acceleration
process (2.4) takes the form

* ° - H ) = *UrmxC° + 2[rml + V]-*[rmr + //]-'&]
+ 0 - M / J J O — 0 (4.1)

where the wm are calculated from (2.5) with p = p(Tm).
Equation (4.1) can now be written in a form analogous
to (3.4),

[rj + H][rJ + V]X(>» + »

= wm{[rj ~ ff][rj - V]X

+ (1 - wm)[rj + H][rJ +

2b}

(4.2)

of which the splitting analogous to (3.2) and (3.6) is given
by

[rj + » = [rj - + (4.3)

» - [rj-

+ (l-wJ[rmI+V]x("-». (4.4)

The equation (4.4) is now a three-level scheme but the
additional term in x(m~1) affords no extra computation,
only storage, since it would have been calculated during
the application of the process on the interval ,x(m~2) to
x<.m-i) j t Would appear, therefore, that the process
(4.3), (4.4) would not be appreciably more time con-
suming than the process (3.2), (3.6). Moreover, as we
shall see in the next section, this new process produces
more rapid convergence.

5. Acceleration of non-stationary ADI process
We shall now generalize the results of the previous

section to the case of A'-variable parameters in the ADI
scheme. We will also show that the resulting process
converges more rapidly than the Peaceman-Rachford
procedure.

A general step in the (m + l)th cycle of the ADI
scheme takes the form

x{mK + i) = g . (j = (5.1)

where
g, = 2r,[r,r + V] -'[/•,/ + H]~'b. (5.2)

If we consider the result of applying (5.1) over a
complete cycle we have

i=\
(5.3)

where

and
1 = 1

T, = TKTK_ l...Ti

gK = 8K + TKgK-\ + TKTK

+ ...+TK...T2gl. (5.4)

The application of our semi-iterative procedure to (5.3)
leads to

(5.5)

Making use of (5.4) we can re-write (5.5) in the form

+ (1 - (5.6)
since

K-\

= n + g*K-l
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Notice that our acceleration is not applied to solutions
over consecutive intervals but to solutions over con-
secutive cycles. Therefore our accelerated K-step
procedure takes the form

in the range 1 < w < 2. It is easy to show that this
function has one turning point, a maximum, at w = 2
and that /(2) = 0. It follows that f(w) < 0 for
1 < w < 2 and m > 1. Therefore

/ =
+ gK]

+ (1 -
and this leads to the splitting

+b
[/-,•/+ v]x<mK+» = 2/-/

for / = 1, . . . K — 1 and

[rKI + 7/]x«m+ •)«•-« = [rKI —

[rKI+ K]JC«

(5.7)

Notice that the equations (5.7) and the first of (5.8) are
exactly the same as occur in the non-accelerated case of
the Peaceman-Rachford method with K ADI para-
meters. Therefore the only modification of this process
occurs in the very last equation of the splitting. This
new process requires the storage of the solutions from
the final equation of the two cycles prior to the one being
currently computed. However, since these values are
required only once in a cycle they can easily be stored in
a backing store and therefore need not prove a drawback
to the method.

Once again the sequence {wm} is calculated from the
/ K \

equations (2.5) with p = p( ]T T,\.

Having now defined the process let us consider the
K

convergence rate. Let M = JJ T,, and denote the

spectral radius of the (symmetric) matrix M by p(M) = p.
Then from Varga (1962), the convergence factor for the
Chebyshev semi-iterative method after m iterations is

where

w = l +V0-P2)'

(5.9)

(5.10)

Also the convergence factor of the Peaceman-Rachford
method after m cycles of K parameters is given by

so that

| \Mm\ | = / y = ( -

\\PJLM)\\
| 2m-'[l +(w— I)"1]

where 1 < w < 2. Consider the function

f{w) = wm — 2m~x — 2m~\w — l)

\\pm(M)\\
< 1 for m > 1

and the Chebyshev acceleration process converges more
rapidly than does the ordinary Peaceman-Rachford
method. The sequence {w,} is strictly decreasing [3]
and tends to a limit w which is usually much closer to 1
than to 2. Therefore in order to obtain a measure of
the ratio of the convergence rates we let w = 1 + e
where e is small. It is then easily shown for m > 2, to

» - [rKI - - wm)[rKI
(5.8)

first order terms

which gives

rate. (This

\\~Pm(M)\\ .

iiwii
a measure of

1 +

the

in fact requires p =

m(w —
2 m - l

increase

. 2ye
' 1 +e

1)

in convergence

\
)

6. Numerical examples
We will now consider as an example, the solution of

Laplace's equation by the two well-known ADI methods
of Peaceman and Rachford (1955) and Mitchell and
Fairweather (1964). Although the latter method does
not fall into the classification of Section 3, it is of a
similar form to the Peaceman-Rachford method.
However, we shall not dwell on such distinctions.

In finite difference notation the above methods take
the respective forms

[(6.1)

and

£)
' ( » • - * )

(i + Hr + *)8>o»>

(6.2)

where S2 is the central difference operator. ADI
parameters were chosen for the model problem with
h — -To for the above methods (both constant parameter
and a set of (four) variable parameters). These methods
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we then used to solve Laplace's equation under Dirichlet
boundary conditions on two regions

(a) a rectangle
(b) an L-shaped region.

Comparative runs were undertaken for the above two
ADI methods with Chebyshev acceleration built into the
process.

The number of cycles of iterations of the ADI para-
meters required for convergence are quoted in Table 1
for problems (a) and (b) for the methods of Peaceman-
Rachford (PR) and Mitchell and Fairweather (MF)
respectively.

Table 1
(a) (.b)

Constant parameter

Constant parameter
with acceleration

Variable parameters

Variable parameters
with acceleration

PR

44

36

1

1

MF

47

37

1

1

PR

32

23

5

4

MF

42

34

6

5

It can be seen that if the ADI process has but
one acceleration parameter the convergence may be
accelerated by about 20% for both problems. The
convergence of the ADI procedures with a variable set
of parameters is much more rapid and consequently the
Chebyshev acceleration does not have such a pro-
nounced effect. However, it does reduce the number of
cycles required. It would be hoped that in more general
regions the convergence of the ADI method with a
variable set of parameters might be more rapid if the
acceleration process is incorporated. The latter process
can be denned in a slightly modified form even if the
eigenvalue distribution is not as in (3.8).

In the next section we derive an alternative version of
the procedure of Section 5. This uses the acceleration
process usually known as Richardson's method. The
new technique can be used to advantage whenever a
Chebyshev acceleration strategy is being employed.

7. An alternative formulation using Richardson's method
This is constructed from (2.2) by the incorporation of

an (acceleration) parameter am +, in the manner

x(m+1) = x(m) _ am+ ,[(/ _ M)xM - g]. (7.1)

If we assume the real eigenvalues of the matrix M are
given by Am where

then the eigenvalues of the matrix (/ — M), denoted by
fi, are given by

where
0

a = 1 — b, £ = 1 — a.

Then from the paper of Young (1954) it follows that the
optimum choice of the {am} (m = 1,. . . N) where a
cycle length N has been chosen, are given by

< = 2[(j8 + a) - (p - «

where

m=\,...N (7.3)

/ W = C o s [(2m - \)TTJ2N], m = \ , . . . N

are the zeroes of the Nth. Chebyshev polynomial. With
this choice of {a^} the factor of convergence for the
cycle is then given by

This process requires a fixed length of cycle N. The
larger the value of N the more rapid the convergence.
However, the disadvantage of this method lies in the
fact that for large N some of the parameters a^ may
become quite large and the process (7.1) then becomes
very susceptible to instabilities through growth of
round-off error. The strategy usually employed is that
of choosing a fixed cycle length N, ordering the para-
meters in a certain way (see Young (1954)) and using
this cycle of parameters repeatedly. After S such cycles
the error is reduced by the factor

If the parameter cycle had been of length NS then the
error would have been reduced by the factor

(7.6)

and such a process would converge more rapidly.
However, as we have observed, the use of NS parameters
may lead to instabilities.

An alternative formulation of the above Chebyshev
acceleration process is given by

(2M-
= Wm+li-2—^' a)

2-(b+a){

where

and

Tm+]
with

wt = i.

2 —
b

(b
—

+
a

a)
(7.8)

- 1 Am< b < 1 (7.2)
This process is a simple extension of the process con-
sidered above. Once again for a sequence of N ws the
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factor of convergence is given by (7.4). However, for
this process we do not have to calculate the sequence {wm}
before we start. They can be calculated recursively from
the relations

iv, = 1 ve- -0-aO"
(7.9)

and so the process carries on automatically.
Therefore it would appear that the semi-iterative pro-

cess (7.7) is greatly superior to Richardson's method (7.1).
Unfortunately if the matrix M involves the inverses of
matrices (in other words, any method different from
Jacobi iteration) then the process (7.7) may require con-
siderable extra storage and computing time since it is a
three-level method. In contrast method (7.1) is a two-
level scheme, no different from the unaccelerated process
({«»} = {I})-

The actual distinction between the two methods can
be seen to be the following:

(a) Richardson's method uses the property that the
zeroes of the Chebyshev polynomial are real and
lie in a certain interval.

(b) Chebyshev semi-iteration uses the property that
there exists a three-term recurrence relation for
Chebyshev polynomials.

We will now show that a suitable process can be con-
structed which enjoys most of the advantages of both
processes, and which also endeavours to minimize any
disadvantage.

Our process is effectively to apply the procedure (7.7)
to the method (7.1) with a "stable" range of {a£}. The
property of Chebyshev polynomials which allows us to
do this is the relation

= Trs(x). (7.10)

We now state our modified semi-iterative method as
follows.

We first of all define the A:th cycle of the Richardson
process in the form

g] (7.11)

for i = 0, . . ., N — 1 where {a^} are given by equation
(7.3) and

The vector x(WV) is then obtained from the vectors
jfWv); X«k-2)N) by the process

XW) = WkxV<N) + (1 - wfc)jc«*-2>M (7.12)

where wk is obtained from (7.9) with

If Qi= I — a, + ,(/ — M) then it is easily seen that the
N

eigenvalues AQ of II Q, are given by

- 1

where b, a are given by (7.2). It follows that after S
cycles of the procedure (7.11) and (7.12) the error is
reduced by a factor

- M)x«*-•>"+'> -

The above process can be regarded as applying Chebyshev
semi-iteration to Richardson's method. The method
(7.11) and (7.12) has the following advantages:

(a) It has a factor of convergence of the form (7.6)
rather than (7.5).

(b) It only employs a stable cycle of Richardson para-
meters. The choice of N is at our disposal and is
chosen to ensure the stability of Richardson's
method.

(c) It is largely a two-step method since the three-step
Chebyshev process is applied only to the final
iterates in each cycle.

id) It does not necessarily require extra storage for the
end-of-cycle iterates. Such vectors may be stored
in a fast-access backing store rather than in core,
since they are required infrequently.

The above process will be of use when our iteration
method corresponds to that of symmetric successive
over-relaxation or to an alternating direction method
with a single ADI parameter. In the case of an ADI
method with a sequence of ADI parameters it is more
efficient to use the procedure outlined in Section 5.
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