Note on two methods of solving ordinary linear

differential equations

By M. R. Osborne and G. A. Watson*

Two assumptions are formulated, based on recent results concerning two methods of approximating
to the solutions of ordinary linear differential equations. They are shown to be false by means of

counter examples.

1. An important class of methods for finding global
solutions to ordinary linear differential equations involves
assuming a trial solution containing free parameters, and
determining these by some strategy.

Attention has recently focussed on two methods of
this kind:

(a) methods equating coefficients of the independent
variable,

(b) collocation methods, where the residual is made
equal to zero at certain values of the independent
variable.

In this note we consider two assumptions based on
recent results regarding these methods, and show them
to be false by means of counter examples.

2. We consider first the most common method of type (a),
viz. the Lanczos 7-method (Lanczos 1957). Here we
obtain polynomial approximations to the solution of the
linear differential equation

L(y) = f(z), 2.1
by solving the system

L()’) = .R,,(Z, Ty T29 0 - - Tp) +f(Z), (2'2)
subject to the imposed boundary conditions. The

T,j=1,2,...,p, are free parameters, and R, is chosen
so that equation (2.2) is satisfied by a polynomial of
degree n. For problems of the form

(4 + Bz)yV + Cy = 0, y(0) = K,
A, B, C, K constant,

2.3)

a possible form for R, is 77T,(z), where T,(z) is the
Chebyshev polynomial of degree »n for the given range.
Some results of Rivlint would seem to indicate that this
choice of R, determines the polynomial approximation
of degree n which gives the smallest residual in the
Chebyshev sense (subsequently referred to as the mini-
max solution). This gives the basis for our first postulate:

Assumption 1

For equations of type (2.3), the Lanczos 7-method,
as detailed above, determines the polynomial approxi-
mation of degree #» which is the minimax solution.

Methods of type (b) normally differ in the strategy
adopted to determine the collocation points, and Kizner
(1966) has compared various choices. He concludes
that for “‘well behaved” solutions, the smallest maximum
error in the solution occurs when the points are taken
to be the zeros of the derivative of T,.,**(z), the
Chebyshev polynomial stretched so that it is zero at the
end points of the range of solution.

Assumption 2
There exists a choice of collocation points which will

give a good computational strategy for all equations
with well-behaved solutions.

3. Consider the following example of an equation of
type (2.3), which is to be solved by the Lanczos -method.

A +92yh—-17y=0, 0z, @G
¥0) = 1.
We seek a polynomial solution of degree 2,
2
E aizi:
i=0
where a;, =0, 1, 2 are unknowns.
Substituting into (3.1) we obtain
2
,Eail//.'(:!) = 7T5(2), (3.2
where Y (z) = (9i — 17)zi + izi-), i=0,1,2.
From the boundary condition,
ao = 1,
and so (3.2) reduces to
1
goaia—l‘ﬁi(z) = 7T(z) + 17, (3.3

$i(z) = i14(2), i=0,1
The solution of (3.3) gives the residual
r(z) = 8:5T(z) = 68z2 — 68z + 8-5

with maximum value 8-5. This is shown in Fig. 1. The
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Fig. 1.

Residual for Lanczos T-method

minimax approximation, however, has residual
ry(z) = 50-4822 — 43-27z 4 1-03

with maximum value 8-24. This is shown in Fig. 2.
We note here that there are just 2 points in the range
when the minimax residual attains its maximum (in
modulus) value.

The approximation problem in the form (3.3) is
produced from (3.1) by

(i) the mapping by the differential operator,
(ii) the constraint imposed by the boundary condition.

The application of (i) results in equation (3.2), where
the functions ¢;(z), i = 0,1, . . ., n = 2 form a Chebyshev
set, i.e. no linear combination has more than n zeros.
It is well known that in this case the minimax approxi-
mation has the residual of maximum modulus occurring
at (n + 1) points, and alternating in sign at those points
(e.g. Rice, 1964).

However, we have to consider the effect of applying
the boundary condition. In our example, the function
o(z) is effectively deleted, leaving just 2 (polynomial)
approximating functions. The minimax approximation,
however, may still have the maximum residual occurring
at 3 points, and alternating in sign at these points. If]
and only if, this is the case, it can be shown that the
residual is characterized as a multiple of the Chebyshev
polynomial of degree 2, and the Lanczos T-method will
give the minimax solution.

It seems clear, then, that no general theory on the
equivalence of the two solutions can be formulated
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Fig. 2. Residual for minimax method

which does not take the boundary condition explicitly
into consideration.

4. In order to contradict the second assumption, we
consider the solution, by a collocation method, of
Ay +(z+By=0, 0<z<1, 4.1
¥0) = K,

where A, B, K are constants.
The exact solution of this equation is

y = Kexp (— (22 + 2Bz2)/24).

2
Taking as solution the polynomial ¥ a;z/, we require 2
collocation points z, and z, i=0

at which
ay(z + B) + a,(A + Bz + z?) + a,(24z + Bz? +2%) = 0.

We also have the constraint

dp — K.
NOW lf A= 2125,
B=—(z1 + 2,

the coefficient of a; vanishes for both points z, and z,,
and no solution can be obtained.

Thus, by suitably adjusting the coefficients in equa-
tion (4.1), any prescribed set of collocation points can
be shown to be worst possible for some differential
equation with a well behaved solution.
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