Eigenvalue problem

Table 1

| r | $p_{1}^{(r)}$ | $p_{2}^{(r)}$ | $p_{3}^{(r)}$ | $p_{4}^{(r)}$ | $p_{5}^{(r)}$ | $h^{(r)}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $0 \cdot 00000000$ | $206666 \cdot 89$ |
| 1 | $0 \cdot 08268049$ | $0 \cdot 13503942$ | $0 \cdot 13597724$ | $0 \cdot 09493792$ | $0 \cdot 15998539$ | $7502 \cdot 8815$ |
| 2 | $0 \cdot 09923862$ | $0 \cdot 11076764$ | $0 \cdot 12183099$ | $0 \cdot 12872758$ | $0 \cdot 13931725$ | $215 \cdot 79632$ |
| 3 | $0 \cdot 09999730$ | $0 \cdot 11000218$ | $0 \cdot 12000549$ | $0 \cdot 12999819$ | $0 \cdot 13999653$ | $0 \cdot 66501625$ |
| 4 | $0 \cdot 10000008$ | $0 \cdot 1099999$ | $0 \cdot 11999990$ | $0 \cdot 13000032$ | $0 \cdot 13999975$ | $0 \cdot 02141011$ |

Table 2

r	$\lambda_{1}^{(r)}$	$\lambda_{2}^{(r)}$
0	$2 \cdot 4265380$	$0 \cdot 50689792$
1	$4 \cdot 0485474$	$0 \cdot 61795635$
2	$4 \cdot 0216960$	$0 \cdot 61629394$
3	$4 \cdot 0216093$	$0 \cdot 61568511$
4	$4 \cdot 0216090$	$0 \cdot 61568327$

$\lambda_{3}^{(r)}$
0.21595877
0.40626636
0.42475279
0.42495200
0.42495310

$\lambda_{4}^{(r)}$	$\lambda_{5}^{(r)}$
-0.61679072	-0.91160397
-0.64914087	-1.0827891
-0.65958413	-1.0623187
-0.65946739	-1.0619393
-0.65946670	-1.0619385

7. Comments

We have had substantial numerical experience with this problem. In the majority of examples we have dealt with, the matrices were of orders up to 15 , and with good initial approximations we have obtained results to 7 digit accuracy in about 6 iterations.

In some of the problems the number of parameters has been less than n. In such cases the least squares solution has been sought for; the behaviour of convergence has been much the same.

The number of possible solutions is theoretically n ! as the system is essentially an algebraic system of equations of orders $1,2, \ldots, n$. None of the known methods for the solution of systems of non-linear equations provides us with all the solutions.

For the determination of other solutions we have had to rely on the rather ad hoc choice of different initial approximations.

It is possible to generalize the problem and the method in some ways. If the matrices (3) are non-symmetric the computation must be extended to the complex field, and in the calculation of derivatives one must employ the left-hand side eigenvectors too. If the matrix (1) is a non-linear function of parameters, the matrices A_{k} must be replaced by $\partial A / \partial p_{k}$ at a given point. We have had no numerical experience in such cases.

Acknowledgements

The work described here has been carried out during my research fellowship at the University of Surrey, London. I wish to thank Dr. J. H. Wilkinson of the National Physical Laboratory for careful reading of the manuscript and for making a number of valuable suggestions.

References

Kantorovich, L. V. (1948). Functional analysis and applied mathematics, Uspehi Mat. Nauk, Vol. 3, p. 89.
Rellich, F. (1936). Störungstheorie der Spectralzerlegung I, Math. Ann., Vol. 113, p. 600.
Toman, S., and Pliva, J. (1966). The multiplicity of solutions of the inverse secular problem, J. Mol. Spectry, Vol. 21, p. 362.

Correspondence

To the Editor,
The Computer Journal.
Sir,

Orion FORTRAN compiler

Although one must support the praise for the Orion multiprogramming supervisor given by E. C. Willey ("An established U.K. software development", this Journal, Nov. 1967), one regrets that he did not mention another development, the Orion FORTRAN compiler (this Journal, July 1964). This compiler, produced by a joint project of the Rutherford Laboratory and the Orion manufacturers, was written in its own source language (which is close to Atlas FORTRAN),
met its target dates, and initially implemented all specified language features. It is still used by one organization for all commercial processing, as well as for technical and scientific calculations, in preference to the Nebula system. Two errors were corrected after release for general use. It took about 10 man-years; how many did Nebula need?

> Yours faithfully,
R. TAYLOR

Rutherford High Energy Laboratory,
Chilton,
Didcot, Berks.
23 November 1967.

