
A computational method for evaluating generalized inverses

By R. P. Tewarson*

A method for computing the generalized inverse of a matrix is described, which makes use of the
well-known Gauss-Jordan elimination method and the orthogonal triangularizations.

1. Introduction

Let A be an m X n matrix of rank r with real elements
(r < m < n). There exist elementary permutation
matrices P and K such that

KAP = G =
C CN~lB

(1.1)

where TV is an r X r non-singular matrix (Penrose, 1956).
Let m — r = c and n — r = d, then C is c X r, B is
r X d and CN~lB is c x d. For the permutation
matrices X and P we have Js:+ = K~l = KT and
P+ = P~l = .P7". By direct substitution in the four
defining relations for the generalized inverse given by
Penrose (1955), it can be easily verified that

From (l.iywe have

G =

A+ = KG+P.

B

(1.2)

], where A = N~lB.

~ ['-]
It can be easily shown (Greville, 1960) that

G+ = [I, A]+JV-' f7 , 1 + .
(1.3)

We shall use the Gauss-Jordan elimination method
(Ralston, 1965; p. 339) to evaluate A, .AM, CN~\ P
and K. This will be followed by orthogonal triangular-
izations. (Householder, 1964; p. 133 and Wilkinson,

1965; p. 152, 223) on H and to evaluate

2. Use of Gauss-Jordan elimination
Suppose that the Gauss-Jordan elimination is per-

formed on the matrix G such that N is reduced to the
identity matrix. This is equivalent to

N~l 01 n v B
-CN-* l\ \C CN-i

The computation can be arranged such that at the
completion of the elimination process G gets transformed
as follows:

G-Jf

(2-2)

Since in practice the elimination is performed on A
instead of G, the position of all the pivots when per-
forming elimination on A therefore determines the
permutation matrices P and AT(Tewarson, 1966; §3).

3. Orthogonal triangularizations
For k = 1, 2 , . . ., r let us define the following:

where = I - and

(3.1)

(3.2)

If the element in the z'th row and the jth column of
is denoted by v{jf, then the scalar fik is given by

where ak

r n

The n element column vector

uf) = 0, / < k,

is given by

a}» = vfk\ i > k.

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Thus 6k is a symmetric orthogonal matrix of order n,
which in (3.1), transforms all the elements vffi, i > k to
zero. (Householder, 1964; p. 133 and Wilkinson, 1965;

p. 152, 223.) Since the columns of are linearly
independent, we have L J

(3.8)

where Q = 6r. . . 82dl and R is an upper triangular
non-singular matrix. In view of the fact that Q is an
orthogonal matrix, from (3.8) it follows that

(3.9)
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where g^ denotes the first r columns of QT.
where a r is r X r, then from (3.9) we have

which gives

or

Generalized inverses

which in view of (3.13) becomes

LP - I '

/ = *TR

RT~' = a, (3.10)

where a is the matrix consisting of the elements in the
first r rows and the first r columns of Q. From (3.9) we
have [/, A] = RTQr and because [/, A] has linearly
independent rows, it follows (Greville, 1960) that

= QT
rR(RTQrQ

T
rR)-1

which in view of (3.10) gives

(3.11)

Now if we construct Q in a similar manner as Q, such
that

where Q = 6r. .. @2QX and A is an upper triangular
non-singular matrix, then we have

= QT
rk, (3.12)

where QJ denotes the first r columns of hT. Let

QT = I , where a i s r x r ; then from (3.12) we have

which gives

or

/ = &A,

A'1 = a, (3.13)

where a is the matrix consisting of the elements belonging
to the first r rows and the first r columns of QT. In

view of the fact that I has linearly independent

columns, it follows (Greville, 1960) from (3.12) that

= (ATA)~lATQr

Finally, substituting (3.11) and (3.14) in (1.3) we have

G+ = QT
r&N-l&Qr,

which, in turn, when substituted in (1.2) yields

A + = KQZ&N-' &<2,P. (3.15)

4. Final remarks
In floating-point computations, it is generally not

easy to determine if some number is effectively zero or
not. This fact leads to the following difficulty in the
elimination process, namely, the problem of deciding
whether a row of A has been transformed to zero or not.
A technique, essentially due to Osborne (1965, p. 304)
will now be described for the above problem. Let LSf>
denote the ith row of A after k — 1 pivots have been
chosen, where / = 1, 2,. . ., m and k = 1, 2,. . ., r.
Since Lf> consists of multiples of the rows of A added
to Lip, it is therefore reasonable to compare the Euclidean
norm of Lf to that of £,</> and use ||L<»||/||L^|| as
the criterion to decide whether a row is zero or not.

The Gauss-Jordan elimination is a reasonable choice
for the evaluation of Af"1, A and ~CN~l, at least in a
significantly large number of practical cases, in view of
the following. In large scale linear programming com-
puter codes (e.g., Honeywell, 1964; Share, 1964), the
Gauss-Jordan elimination in the form of "the product
form of inverse" (Tewarson 1966; Tewarson, 1967) is
used in inverting the r x r submatrix of the m X m
basis matrix. Usually r is less than m due to redundant
constraints (artificial vectors at zero level) and the con-
tradictory constraints (artificial vectors at non-zero
level-problem infeasible). In both the cases those rows
that turn out to be linear combinations of the others
are determined as follows. If in a certain row, no pivot
greater than a certain "pivot tolerance" can be found,
then that row is considered to be a linear combination
of the other rows in which pivots have already been
chosen. (In connection with the design and writing of
the linear programming compiler ALPS (Honeywell,
1964) the author solved about one hundred linear pro-
gramming problems. These actual production problems
were collected from diverse users of linear programming
and ranged in size from 20 to 805 rows. A "pivot
tolerance" of 10~5 appeared to be adequate for a 40-bit
mantissa.)

We shall now point out some of the advantages of
using the method described in this paper. If A is sparse
(e.g. in linear programming (see Pyle, I960)), then we
can select the rows and columns that will constitute the
matrix N, in such a manner that A as well as N~' is kept
sparse. Keeping A and N~l sparse will not only save
storage space but also keep the round-off errors low.
The techniques described in Tewarson (1966) and
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Generalized inverses

Tewarson (1967) can be utilized to keep A and N~l

sparse. For example, we count the number of non-zero
elements in each row of A and call this the row count
vector. Then the sum of those elements of the row
count vector that correspond to the non-zero elements
of a particular column j is called the density measure Dj
of column j . Now the columns of A can be considered
in ascending values of Djs as candidates for being chosen
as the columns of N. Likewise the rows can be selected
on the basis of ascending values of the elements of the
row count vector; of course, some suitable updating
(adjustment) of the elements of the two count vector
would be needed as more and more columns of A are
chosen to become the columns of N. Evidently the
above-mentioned techniques can also be used in the
other methods for computing the generalized inverses
(Ben-Israel and Cohen, 1966). However, these methods
require the formation of ATA and in general ATA tends
to be denser than A; therefore, it seems that some of the
advantages of keeping the various sub-matrices sparse
may be offset. ry -i

It is easy to see that when triangularizing and
r/ l ^ -"

, only the elements in the lower triangular part
of the matrices Ar and CN~l are to be transformed to
zero. Due to this fact, the elementary Hermitian matrices
of the type I—2wwT used in the triangularization will be

sparse. This will save not only the computer storage
but also minimize the round-off errors.

In (2.1), instead of the Gauss-Jordan elimination, the
usual Gaussian elimination (Ralston 1965, p. 399) can
be used as follows:

L~l OlfN B 1 _ VL~lN L~lB~\
-CN~1 l\\_C CN~lB\ ~ |_0 0 J '

Where N = LU, L being a unit lower triangular and U
an upper triangular matrix. The above is followed by
the usual back substitution

£/-'[£"'AT, L~lB] = [/ N~lB]

In any case, it is recommended that complete pivoting
be used in the elimination (Wilkinson, 1965; p. 212).
When computing Q and Q, it is possible to store them

in factored form to replace A r and _ respec-
tively (Wilkinson, 1965; p. 235). Notice that R and A
are not used in (3.15) and therefore need not be stored.
A program based on the method given in the paper is
available from Mr. T. Hasiotis, Applied Analysis
Department, State University of New York, Stony
Brook, N.Y., U.S.A. The program is written in
FORTRAN IV for the IBM 7040/1401 system.
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Dudley W. Hooper
Since this issue went to press the editors have heard, with deep regret, of the
sudden death on 14 January 1968 of Mr. Dudley Hooper, Past President of
The British Computer Society. Mr. Hooper was a founder of the Society
and its predecessor, the London Computer Group, and he was the first editor
of our companion publication, The Computer Bulletin. A full appreciation
will be published in our next issue.
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