
Algorithms Supplement
Previously published algorithms

The following Algorithms have been published in the Com-
munications of the Association for Computing Machinery
during the period July-September 1967.

305 SYMMETRIC POLYNOMIALS
Expresses the symmetric sum 2*,*' xfj • • • •"in

over n variables as a sum of determinants in the unitary
symmetric functions 2*/1*12 • • • xtr

306 PERMUTATIONS WITH REPETITIONS
Successive calls of the algorithm generate in an array all

permutations of its elements in reverse lexicographical order.

307 SYMMETRIC GROUP CHARACTERS
Produces the irreducible character of the symmetric group

corresponding to the partitions of the representation and the
class of the group Sn.

308 GENERATION OF PERMUTATIONS IN PSEUDO-
LEXICOGRAPHIC ORDER

309 GAMMA FUNCTION WITH ARBITRARY
PRECISION

Computes the value of the gamma function for any real
argument for which the result can be represented within the
computer, working with a given number of decimal digits.
It is especially useful for variable field length computers and
for multiple-precision calculations.

310 PRIME NUMBER GENERATOR 1

311 PRIME NUMBER GENERATOR 2
Algorithm 310 generates the prime numbers less than or

equal to a given number. Algorithm 311 is a faster version
of algorithm 310.

The following Algorithms were published in Nordisk
Tidskrift for lnformationsbehandling in the April 1967 issue.

Contribution No. 20 SMITH'S NORMAL FORM
A procedure is given for reduction of a polynomial matrix

A(X) to Smith's normal form, all coefficients supposed to be
rational numbers. In particular, the case A(\) = A/-C is
considered, where C is a constant matrix.

Paper ON THE PRACTICAL APPLICATION OF THE
MODIFIED ROM BERG ALGORITHM

Algorithms
Algorithm 31. COMPLEX FOURIER SERIES

J. Boothroyd,
Hydro-University Computing Centre,
University of Tasmania.

Author's Note.
This procedure implements the Cooley-Tukey algorithm

(Cooley and Tukey, 1965) for computing complex Fourier

series. For n < 0, (N = abs(n)) the procedure evaluates the
coefficients A(k) of the Fourier analysis:

A(k) = X(J)W-J«, k=

of the sampled function X(J). For n> 0,(N = n), the
function X(J)J = 0, 1,. . ., N — 1, may be synthesized from
the coefficients by:

X(J) = \ A(k)W+Jk

k=o

where, in each case, W = e \ Q.mlN).
At input, in case n < 0, the arrays rea, ima [0 : N — 1] con-
tain, respectively, the real and imaginary parts of the
function X(J) at the sample points j = 0,1 . . ., N — 1. At
output the same arrays contain the real and imaginary parts
of A(k), k = 0 , 1,2.. ., N — 1. For M > 0 the reverse
situation applies, i.e. at input A(k) is provided and, for
output, the procedure yields X(J).

Cooley and Tukey have shown that if N = apbi(f. ..
where a,b,c... are the prime factors of N, then the number
of complex operations needed is N(p xa+qxb + cxr...).
Capitalising on the binary nature of computers, a highly
efficient implementation of this algorithm is possible, in
machine code, for N = 2m.

This procedure places no restrictions on N, provided that
N > 1, but is most efficient for those cases in which N is large
c o m p a r e d w i t h (p x a + q x b + c x r . . .) .

N is first decomposed into its prime factors. The Cooley-
Tukey process is executed to obtain the A(k) or X(J) but
not in the correct order. A final reordering of the elements
of rea, ima is performed to achieve the desired result.

The description given above is appropriate for origin = 0.
For origin = s the expansions are:

A(k) = i
V

f
and

k=-s

],..., N-s-l

contained, as appropriate in rea, imawith the AQc) or
[0 : N- 1].

[Thanks are due to the referee for his corrections and
many suggested improvements.]

Reference
COOLEY, J. W., and TUKEY, J. W. (1965). An Algorithm for

the Machine Calculation of Complex Fourier Series,
Mathematics of Computation, Vol. 19, pp. 297-301.

procedure complexfourier (n, rea, ima, origin); value n, origin;
integer n, origin; array rea, ima;
begin integer nn, nb, max, wtk;

integer array b [1 : In (abs (n))/ In (3 0) + 1];

procedure primefactors (n, f, nf); value n;
integer n, nf; integer array / ;
comment decomposes n into factors of four (and a possible
single factor of two) and its odd prime factors. The factors

414

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/414/464074 by guest on 13 M
arch 2024

Algorithms Supplement

occupy / [I] through f[nf] of / [I : k] where k will be suffi-
cient ifik^ n;

begin integer i, q, p, d;
i :=0;p : = 4 ;

d : = — 2; q : = n;
next: if q > p then

begin q := n -^ p;
iin^q X p then
begin/7 := /? + d;

d : = if d< 1 then 1 else 2
end
else
begin i : = i + 1;

/[/] := p;n : = ?
end;
goto next

end;
if /i # 1 then
begin i : = i -+- 1;

/ ['] : = «
end;

end prime/actors;

integer procedure rev (m, b, n, r); value m, n, r;
integer m,n,r; integer array b;
comment performs an integer transformation as follows:—
1. An integer k is expressed as (Jc\, kl, . . ., kri) where k\
is the most and kn the least significant digit of the n-digit
mixed radix representation of k, with ki associated with
base b[i].
2. The subset (kl, kl, . . ., kr) is converted to a second
integer, treating k\, kr as the least and most significant digits
respectively.

The procedure identifier rev yields the result of applying
this transformation to m;
begin integer sum, i, q, d, j ;

sum := 0;
for i : = n step — 1 until 2 do
begin d := b[i];

q : — m -H d; j : = m — q x d;
if i < r then sum : = sum x d + j ;
m := q

end;
rev := sum X b[\] + m

end rev;

integer procedure jtok (m, b, n); value m, n;
integer m, n; integer array b;
comment performs an integer transformation according to
the following rules:—
1. An integer j is expressed as (Jl,j2, . . .,jri) where j \ is the
least significant digit and jn the most significant digit of the
n-digit mixed radix representation of j where each ji is
associated with base b[i\.
2. A second integer k is formed by reversing the order of
significance of the digits, i.e. jn is now regarded as the least
significant digit.

The procedure identifier jtok yields the result of applying
this transformation to m;
begin integer sum, i, j , d, q, nlessl;

nlessl := n — 1; sum : = 0;
for j : = 1 step 1 until nlessl do

begin d := b[i];
q := m 4- d; j : = m — q X d;
sum : = sum X d + j ;
m : = q

end;
jtok := sum x b[n] + m

end jtok;

procedure jkperm (rea, ima, na, origin, b, nb);
value na, nb, origin;
array rea, ima; integer array b; integer na, nb, origin;
comment rea, ima[0 : abs(na)] are the real and imaginary
parts of a complex array a. For na > 0 the procedure
rearranges the elements so that a\j] : = a[k] where k is the
j to k transformation of j defined by procedure jtok. The
radix base vector for that procedure is b[l : nb].
Elements a[k] are exchanged with a[j] in the order
j = 0, 1, 2, . . ., na provided k> j . If k <j then ele-
ment a[k] is now elsewhere following previous exchanges.
In this case repeated transformations of k are made until
k>j.

For na<0 the rearrangement is a\J] : = a[k]j(abs(na) +1).
The above description applies for origin = 0. For origin # 0
the rearrangement is a\J] := a[k] where k = jtok (J—origin)
+ origin, these sums and differences being modulo
(abs (na) + 1);
begin integer nj, j , k, n; real nn, rtemp, itemp;

if na < 0 then
begin n : = 1 — na;

nj : = — na
end
else
begin n : = 1 + na;

nj := na
end;
nn := n;
for j : = 0 step 1 until nj do
begin k : = j ;
test: k : = k — origin;

\fk< 0 then k : = k + n;
k : — jtok (k, b, nb) + origin;
if k > nj then k : = k — n;
if k <j then goto test;
ifj=£k then
begin rtemp : = rea[k]; itemp : = ima[k];

if na < 0 then
begin rtemp : — rtemp j nn;

itemp : = itemp j nn
end;
rea[k] : = rea\J]; rea[j] : = rtemp;
ima[k] := ima\J]; ima\J] : = itemp

end
else
if na < 0 then
begin rea\J] := rea\J]jnn;

ima[j] := ima\j]/nn
end

end/
end jkperm;

comment main program;
wtk : = nn : =
primefactors (nn, b, nb) if n < 0 then — n else n;

415

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/414/464074 by guest on 13 M
arch 2024

Algorithms Supplement

max : = b[nb];
if max < b[\] then max := 4;
begin array rw, iw, rx, ix[l : max];

integer nlessX, wtj, j , i, r, gpstep, wg, g, kend, k, jj, kbase,
rlessl;
real z, wrz, rwrz, iwrz, rwj, iwj, wgz, re, im, rwi, iwi,
rsum, isum, twopi;
nlessX : = nn — 1;
twopi : = 6-283185307180;
comment this constant is the value of 2TT correct to
12 decimal places;
z := twopi I n; rlessl : = 0;
if n < 0 then twopi : = — twopi;
for r : = 1 step 1 until nb do
begin kbase : = b[r\; gpstep := wtk;

wtk : = wtk -7- kbase;
wrz := twopi/kbase;
rwrz : = cos (wrz); iwrz : = sin (wrz);
for g : = 0 step gpstep until nlessX do
begin if g = 0 then

begin rwj : = 1-0;
iwj : = 0 0

end
else
begin wg : = rev(g, b, nb, rlessl) X wtk;

wgz : = wg x z;
rwj :— rw[l] : = cos (wgz);
iwj : = iw[l] := JI/I (nyz)

end;
for j : = 2 step 1 until £6ase do
begin re : = rwrz x rwj — iwrz X /wy;

im : = rwrz X /w/ + iwrz X rny;
rw/ : = rw[y] : = re;
/w/ : = iw\J] := /«

end;

kend :=
for k : -
begin jj

forj :
begin

= g + wtk — 1;
= g step 1 until kend.do
:= k + origin;
: = 1 step 1 until kbase
if jj > /7/e.wl then// : =

rx\J] '•= rea\jj]; ix\J] : =

end;
jj : =
for i
begin

k + origin;
: = 1 step 1 until kbase
if jj > «fe«l then jj : =

do
= jj — nn;
•- imaVj];

do
= jj — nn;

rwi := rw[/]; iwi := iV[/];
MM/n := rx[kbase]; isum := ix[kbase];
forj := fcZw.se — 1 step —1 until 1 do
if i ^ l V#=£0then
begin re := rsum X rtv; — isum X »w/;

/'w := rsum X IWI + /JMTM X rwi;

rsum := re + rjc[/];
isum :— im + MC[/]

end
else
begin rw/n := rsum + rx[j]\

isum := isum + ix[j]
end;
rea\Jj] :— rsum; ima\Jj] := isum;

jj •= jj + wtk
end /

end k
end^; r/e.wl := r

end r;
if n < 0 then «/ewl : = — nlessl;
jkperm (rea, ima, nlessX, origin, b, nb)

end
end complexfourier

Contributions for the Algorithms Supplement should be sent to

P. Hammersley
University Mathematical Laboratory

Corn Exchange Street
Cambridge

Discussion and Correspondence
Modification of the complex method of constrained optimization
By J. A. Guin*

On the basis of some recent computational experience using
the complex method of Box (1965), it has been found that
the following modifications in the method increase the
chances of reaching the optimum.

(1) Box has suggested that a projected trial point be moved
in halfway toward the centroid of the remaining points until
a new point better than the rejected one is found. If by
chance all points on the line from the centroid to the projected
point are worse than the original point, application of this
rule causes the projected point eventually to coincide with
the centroid. When this happens no further progress is
possible. Considering this situation, it is recommended that
if the projection factor a is found to have been reduced below

a certain quantity (we have found a = 10~5 to be a satis-
factory criterion) without obtaining a better function value
for the projected trial point, then this trial point should be
replaced to its original unprojected position and the second
worst point rejected instead. This procedure tends to keep
the complex moving unless the centroid is indeed near the
optimum.

(2) The rule of setting an independent variable to 0-000001
inside its limit sometimes causes the method to obtain a false
optimum if all points of the complex fall into this hyperplane.
This happens especially when the optimum is near, but not
upon the constraint. To alleviate this situation, it is recom-
mended that the above rule be abandoned and that only the

Department of Chemical Engineering, The University of Texas, Austin, Texas.

416

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/414/464074 by guest on 13 M
arch 2024

