The evaluation of multidimensional integrals

By R. Cranley* and T. N. L. Patterson*

A critical examination is made of a class of formulae which have been used to carry out multi-
dimensional integrations. It is shown that certain familiar assumptions under which these
formulae have been constructed are not valid and that their general use may produce results
seriously in error. It is suggested that the repeated application of one dimensional integration
formulae is still likely to be the most satisfactory method for evaluating multidimensional integrals
both as regards accuracy and economy.

(First received January 1967, and in revised form December 1967)

1. Introduction

In this paper an investigation is made of multidimen-
sional quadrature formulae which evaluate integrals of

1 1
the formj e jf(xl, X3+ .. Xp)dXy . ..dx, In general
-1 94

an integral can be reduced to this form by an appropriate
transformation of the variables.

The most natural approach to the evaluation of an
n-dimensional integral is through the repeated applica-
tion to each variable of a one-dimensional formula of
degree of precision k yielding what is called a Cartesian
product formula. A one-dimensional formula of degree
of precision k is defined as one which integrates exactly
all powers of x not greater than x*. Thus a Cartesian
product formula based on a one-dimensional formula of
degree of precision k would integrate exactly all products

of powers of the variables, x#x%...xk called
monomials, such that 0 < i; <k for j=1,2,...,n
Such a formula would require k" evaluations of the

integrand.

This strong dependence of the number of integrand
evaluations on the value of n has led to the development
of multidimensional integration formulae, which would
require fewer integrand evaluations than the Cartesian
product formulae, and based on an extension of the
definition of the degree of precision. A multidimensional
formula of degree of precision k is defined to be one
which integrates exactly all monomials of power not
greater than k. A monomial of power p is defined to be a
monomial, x}x%...x{, such that iy + i, +... + i, =p.
All multivariate polynomials of degree not greater than
k would be integrated exactly by a multidimensional
formula of degree of precision k. The multivariate
polynomial of degree k is defined as a linear sum of
monomials, as distinct from powers as in the one-
dimensional case, of power not greater than k. For
example the general multivariate polynomial of degree
three in two dimensions is

ayx3 + a,x3 + asxix, + ax,xj + asx? + agx3

+ azx1x; + agxy + agx; + a0

where a,, a,, . . . a;o are constants. The general multi-
variate polynomial of degree k in n dimensions has

n-+k .1 .
( k ) terms (Hammer, 1959). A multidimensional

formula based on this definition of degree of precision
was developed in the last century by Clerk-Maxwell
(1877) and over the last several years many more
formulae have been derived (e.g. Tyler, 1957; Stroud,
1957, 1960; Miller, 1960).

The use of the definition, degree of precision, to
categorize multidimensional integration formulae sug-
gests that the accuracy of the formulae and their degree
of precision are closely related. It will be shown later
that certain previously unemphasized properties of the
Taylor expansion of a multivariate function, which
forms the foundation for the development of the multi-
dimensional formulae, precludes any meaningful rela-
tionship between degree of precision and accuracy. As
a result the application of these integration formulae is
likely to yield unreliable results.

2. The construction of multidimensional integration
formulae

The multidimensional integration formulae for evaluat-
ing the n-dimensional integral -

1 1
I= J_l. .. I_j:(xl, e Xpdxy ... dx, €))

are constructed, as in the one-dimensional case, by
approximating (1) by a weighted sum of the values of the
integrand at certain specified points. The general
formula can be written as

L
I~ t§1At % f(al,n N TI an,t) (2)

where Y denotes the sum over all permutations including
P

sign changes of ay,,, a5, . . . a,,. It is clear that these
points should be given equal weight, 4,, since the range
of integration is symmetrical and there is no reason to
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Multi-dimensional integrals

distinguish one variable from another in the general
integrand. The quantity {a;,,...a,,} is sometimes
referred to as a generator.

The technique for calculating the abscissae and
weights of (2) was first introduced by Clerk-Maxwell
(1877) and later developed by Tyler (1953), Stroud (1957),
Hammer and Stroud (1958) and Miller (1960). It
consists of expanding both (1) and (2) as Taylor series
about the origin and choosing the weights and abscissae
such that the expansions agree for all terms associated
with monomials of power not greater than k. The
resulting formulae are said to be of degree of precision
k. Three formulae of degree of precision five and one of
degree of precision seven are given in the Appendix and
will be referred to later.

Such integration formula of degree of precision k will
integrate exactly all monomials of power k. If, however,
they are to integrate monomials of higher power with
acceptable accuracy, it is required that the Taylor
expansion of the integral should converge rapidly and
that terms which have not been taken account of
exactly in the expansion of (1) (that is, those associated
with monomials of power greater than k) should not
affect the result unacceptably. It will be shown in the
next section that in general neither of these requirements
is likely to be satisfied.

3. The Taylor expansion of multivariate functions

The Taylor expansion of f(x;, x,, . . . x,) about the

origin can be written as

xn) =

Z Z Z D,,,,...,,-nx‘i’x‘g...x‘,';' (€))

i1=0 i=0...i,=0

f(xl, X2y o oo

and repeated partial differentiation shows that

1
D' in9% e inm — = s 1
S PR 7% IR

bil+i2+"'

+ih £(0,0, . .. ,0).

dlx; dx, ... dnx,

@

As Hammer and Wymore (1957) have noted, for the
purposes of integration, monomials of the same power
contribute equally so that all permutations of the indices
in x{x22 ... xi» can be grouped together. For example
x}x2 makes the same contribution as x7x3. In addition,
since the range of integration in each variable is sym-
metrical only even powers of the individual variables
need be considered. The integrand can thus be written
as

f(xl’ X2y o o oy xn) :f(07 O’ .
o0 0 1
+Z e

. 0) + z (2),s2,xz

2i.2j
Sai, 2 %1 X3
[>°) © ) 1

_r i 2k
tE E Eenepani et
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1 1 11
=Jfo 4 575x1 + (5 Sext + 31 575 2x2x§)

Sa.2, 2x2x2x2)

1
+(6'S6"1 4'2154’2" v+ 213171

+(8'S8x1 +6'2'S6,2x x2 + S4 4x1x2

4141

1
+ f1z121 542,205

1
+ sraraarSe e X PREE) + ©)

where Sy, ;,. ..., is defined by

@) _d+ht...+ £, 0
S _ Lt ] 0)
holsy. .. ly m2=1 ; o dz e @

the summation being over all the (}) choices of s
variables from n and over all distinct permutations of
I, b, .. ., I, not taking account of order. The total
. . (N s!

number of terms in (7) is ( S) m
ng, ny, . . ., n, are the numbers of the /, I,, . . ., I, which
are equal to each other. For example 2,2,4,4,4, would
have r = 2 and n; = 2 and n, = 3.

The expansion of the multidimensional integral is
obtained directly from (6) by integrating over all the
variables, giving

J=2-n fil .Ii({xl ..

1 1 1
=fo + ﬁsz + (554 + ﬁsz,z)

where

. dxnf(xl’ X25 o o o xn)

1 1 1
+ (7_!S6 TR T332 22)

1 1 1 1
+ (5755 + 77375 2 + 5757504 + 5737375422

1
+ 3313131 S0 222) - ®)

In both (6) and (8) the terms associated with the same
monomial power have been grouped together in brackets.
The convergence of the Taylor expansion (5) is directly
reflected in expansion (8), and the properties of this
series will now be discussed. Table 1 lists the coefficients,
multiplying the S; ; . ... terms in (8), in their decreasing
order of magnitude. The rather slow convergence is to
be noted. Apart from the first few values the successive
coefficients generally differ by much less than a factor
of two. Another astonishing fact which emerges is that
ordering in terms of monomial power is completely lost
after the first few terms. For example, the first fourteen
coefficients in the ordering are associated with monomials
of powers 0,2,4,4,6,6,8,8,6,10,8,10,10 and 12.
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Multi-dimensional integrals

Table 1

Coefficients of the Taylor expansion (8) of the text. The coefficients are referred to
by their associated subscripts and are grouped such that the first coefficient of a given
order is at least a factor of 10 greater than the first coefficient of the next order. The
coefficients within each order are in decreasing order of magnitude.

ORDER COEFFICIENTS
1 0 2
10! 22 4 222
10—2 24 2222 224 6
10-3 22222 44 2224 26 2222272
10—4 244 22224 226 2222222 8 2244 4,6
10-3 222224 2226 22222222 444 28 22244
24,6 2222224 22226
222222222 2444 228 222244 2246 6,6
10-¢ 22222224 222226 10 48 2222222222 22444
446 2228
2222244 22246 26,6 222222224 4444
10-7 2222226 210 248 222444 2446 22228
22222244 222246 2266 )
2222222224 24444 22222226 22,10
2248 68 2222444 22446 222228 46,6
108 222222244 2222246 4,10 44,8 2226,6 12
22,4444 222222226 22210 4446 22248
2,6,8
So far the effect of the actual values of the derivatives 10 1 ) A+ L1011 LY, )
on the convergence has not been discussed. 1t is con- il——_-[l 1+ Xx)" Shoboensle = (10 — s)!ny'ny! .. . 0,
ceivable that the S terms could decrease sufficiently (10)
rapidly with increasing monomial power to produce 10 10
satisfactory convergence, but this is in fact a property of (1 + x,-) S
very smooth functions. Thus in such circumstances the i=l A+ 12+ 10 101201
Cartesian product formulae would probably be com- = _ M
petitive with the multidimensional formulae. However, Q0—1l —hL—...=1)(10=s)!n,!n,! ... 0,1
such a property of the S terms is unlikely to be met by =0ifl, + 1, +...+1,>20. an

a general function.

It is of interest to investigate the ordering of monomials
for some specific integrands, hopefully those which might
be representative of the range of variation encountered
in practice. 10 10 1

The ten-dimensional integrands I cos Ax;, II dTFAx)

i=1 i=1

10 20
and (1 4+ x,-) have derivatives given by the follow-
i=1

ing expressions:

10 N+ 2+ 1) 101
IT cos Ax; : | Sy, 1, )]

imy R Pholy fJ=00—@mmg”.m!

104

The quantities ny, n,, . . ., n, have been defined in con-
nection with (7). The contributions of the various terms
of (8) in decreasing order of magnitude for these inte-
grands are presented in Tables 2, 3, 4, 5 and 6.
Table 2 0gives the contributions to (8) from the
1

integrand II cos Ax; for A = 1. It is clear that ordering
i=1

in terms of monomial power is completely disrupted
and that an integration formula based on monomial
power would give poor results. Neglecting a factor of
210 Formula 3 of the Appendix using 201 integrand
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Multi-dimensional integrals

Table 2

10
Contribution of terms of (8) of the text for the integrand Il cos x;. The terms are

i=1
referred to by their associated subscripts and are grouped such that the first term of a
given order is at least a factor of 10 greater than the first term of the next order. The
terms within each order are in decreasing order of magnitude.

ORDER TERMS

1 2 22 0 222

10-1! 2222 24 224 4 22222 2224

10-2 2,2224 222222 244 44 26 2244 226
6 222224

103 22244 2226 2222222 246 22226
222244 2222224 46 2246

2444 444 28 22444 22246 2222726
10-4 22,8 8 22222222 2222244 222444
2,2222224 2228

222,246 2446 44,6 2222226 22446

10-3 2,48 22228 26,6 48 2222444 22222244
6,6 2,248 2266 2222246 24444 4444
2,22,2,2,2,2,2,2

222446 22248 22266 222228 222222224
224444 210 22222226 2210 10 22222444
10-6 2466 2222446 4,66 222248 22210 44,46
24446 222266 2224444 222222244

2,2,2,2,2,2,4,6

evaluations gives the result of 0-545 for this integral,
while the exact value is about 0-179. For comparison,
the 2-point repeated one-dimensional Gauss formula
using 1024 integrand evaluations gives the result 0-171.
Improvement of Formula 3 by subdivision is out of the
question since the number of integrand evaluations
would increase by a factor of 2! The respectable
performance of the 2-point Gauss formula is a result of
the predominance of low valued subscript terms early in
the expansion. This tends to be a characteristic of
multidimensional integrands and suggests that accurate
results may generally be obtainable using repeated one-
dimensional Gauss formulae of low degree. It would be
expected that as A is made smaller, viz. as the integrand
becomes smoother, that ordering in terms of monomial
power would not be disrupted so early in the expansion
and that the convergence would be more rapid. Table 3,
which.shows the contribution from the individual terms

10
of (8) for the integrand II cosg verifies this. As
i=1

i=

expected Formula 3 gives a satisfactory result, 0-665
compared with the exact value of about 0-657. If,

105

however, it were necessary to improve this result by
using a multidimensional formula of higher degree the
disruption of ordering in monomial power later in the
expansion would again produce inaccuracies.

Table 4 lists the contributions to (8) of the integrand
(10) for A = 0-9 which varies rapidly close to the limits
of integration. In this case not only is there extreme
disruption of monomial ordering but in addition the
convergence is extremely slow. Again as A is reduced
the reordering becomes less pronounced and the con-
vergence is more rapid. Table 5 illustrates this, showing
the contribution to (8) of the integrand (10) for A = 0-5.
Again Formula 3 gives a result of the correct
order, 0-241, compared to the exact value of about
0-256.

Finally Table 6 shows the contributions to (8) for
integrand (11) and indicates how extreme the reordering
of monomial powers can be. In this case a multi-
dimensional formula of degree 18 would be required to
handle the first term alone. It is notable that a three-
point Gauss formula would exactly integrate all but eight
of the first twenty-four terms and gives a value of
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Multi-dimensional integrals

Table 3

10
Contribution of terms of (8) of the text for the integrand [] cos} x;. The terms are

i=1

referred to by their associated subscripts and are grouped such that the first term of
a given order is at least a factor of 10 greater than the first term of the next order.
The terms within each order are in decreasing order of magnitude.

ORDER TERMS

1 0 2

10-1 22 2272

10-2 4 24 22272

10-3 22,4

10-4 22222 2224 6 44 2,6 244

10-5 22224 226 222222 2244

10-6 2226 46 8 222224 22244 246 28
22227222

10-7 444 22226 2246 228 2444 222244
2222224

10-8 2228 22444 22246 48 222226 66 22222222
44,6 10 248 2,66 210 2446 2222244

10-° 222444 22222224 22228 222246 2248
22,66 4,444 2210 2222226 22446
24444 222222222 68 22248 4,66

10-10 | 2222444 22222244 22266 2227228
222,10 4,10 4,48 2222246 268 222446
2,4,6,6 222222224 224444 12

1:46 x 104 compared with the exact result of about
1-57 x 104 (again neglecting a factor of 219),

With the exception of (11), the integrands that have
been discussed have been separable in terms of the
variables. Due to the difficulty of obtaining expressions
for the derivatives of non-separable integrands it was
not possible to derive tables for the contribution to (8)
even for simple cases. However, two three-dimensional
non-separable test integrands were evaluated using
Formulae 1, 2, 3 and 4 of the Appendix. It would be
expected that the strong appearance of cross terms would
make integrals of this type difficult to handle with high
accuracy by multidimensional formulae based on mono-
mial power, and this is indeed borne out by the results
shown in Table 7. For comparison, the result of the
repeated Gauss formula of fifth degree has been given;
this uses approximately the same number of points as
the other formulae. A point which should be stressed
is that a multidimensional formula which does not

106

contain at least one generator (see Section 2) having
non-zero elements in each dimension will give zero for
monomials containing all the variables. The occurrence
of this undesirable feature for formulae 1 and 3 is
evident in Table 7 for the integrand sin x2y2z2 whose
leading term contains all three variables.

The multidimensional formulae could of course be
made more accurate by subdividing the domain of
integration and summing the results of the application
of the formulae to each subdomain. Unless, however,
some of the abscissae lie on the boundary of the domain
of integration and thus contribute to more than one of
the partial sums, the amount of labour is likely to
increase out of all proportion to the gain in accuracy.
For example, Miller (1960) subdivides the range of
Formula 3 and applies the resulting 152-point formula to

1 1 1

integrate j J j cos x cos y cos z dx dy dz obtaining
—1J-1J

an error of 0-000384. This is much inferior to the
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Multi-dimensional integrals
Table 4
10 1

Contribution of terms of (8) of the text for the integrand [J aF09x)" The
i=1 i

terms are referred to by their associated subscripts and are grouped such that the first

term of a given order is at least a factor of 2 greater than the first term of the next

order. The terms within each order are in decreasing order of magnitude.

ORDER TERMS
1 224 22 24 2 222 2224 226 24,6 2,6 2246
2-1 244 2244 4 2226 228 248 28 2248 2222

0 22246 46 2446 22224 22244

2,2,10 24,10 2,228 44 210 22410 6 22446 26,8
2-2 2,268 24,68 22248 2212 48 2448 26,6 24,12
2,2,6,6 2,12 22468 22210 224,12 246,6 2444
22,226 8 44,6 26,10 22448 226,10 246,10 2,2,46,6

22,444 222410 2214 24,14 4,10 244,10 2,14
224,14 22222 2226,8 22212 2246,10 4,68
22,2246 68 222446 26,12 22228 10 2,2,6,12
2-3 2,2,44,10 448 28,10 24,6,12 222244 22266
2,2,24,12 2,28,10 46,6 444 24810 6,6 4,12

222248 2288

2,4,46,8 24412 22214 2226,10 2,24,6,12 2,224,638
4,6,10 2,6,14 288 224810 12 6,10 2,2,6,14 2,227210

four-point Gauss formula which gives an error of
0-00002 using only 64 points. In any case the applica-
tion of subdivision does not necessarily produce uniform
convergence so that probably more than one sub-
division would have to be applied. A further improve-
ment in accuracy could be obtained by the use of extra-
polation methods but again several subdivisions would
be necessary with a consequent large increase in labour.

4. Conclusions

An analysis of the Taylor expansion of multi-
dimensional integrands indicate that multidimensional
integration formulae derived on the basis of exact
integration of monomials up to a particular power are
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Multi-dimensional integrals

Table 5

10 1
Contribution of terms of (8) of the text for the integrand ‘[Il A F05x)
are referred to by their associated subscripts and are grouped such that the first term of a
given order is at least a factor of 10 greater than the first term of the next order. The
terms within each order are in decreasing order of magnitude.

The terms

ORDER TERMS

1 0 2 22 4

10-! 24 222 224 6 2,6 2222

10—2 44 2224 226 244 8 28 46 246 2244 2226
228 22222 10 22224

2,10 4,8 2246 248 444 22244 66 2210 2228 12
10-3 2,66 2,12 2444 22226 446 410 2248 68 22246
2446 222222

24,10 222224 268 2212 2266 22210 14 22444 214
22228 448 222244 466 4,12 224,10 22446

10—+ 6,10 22,68 22248 2448 2412 2466 26,10

222226 2214 22212 16 4,68 222246 88

22266 2,16

288 222210 4444 2468 44,10 222444
4,14 224,12 6,12 4446 22448 2222224 810
2,2,6,10 2222222 22466 222410 2414
24410 22268 24444 222446 2,612

10-5 2,810 22,16 222228 18 22214 24,446

4,6,10 222248 2288 2222244 218 66,6
2,24,68 222212 4412 24610 4,16 44,66
2,2,414 488 6,14 2,666 668 222266 8,12
2,2,6,12 224410 4448 222412 228,10

24,16 2222226 244,12 222610

Appendix

Some multidimensional integration formulae

Formula 1 Formula 2

An n-dimensional fifth degree formula comprising
4n? — 2n + 1 integrand evaluations is

(10n% — 106n + 180)
180 f(03 Oa cee 0)

TR ) /0,0,...,0)

Gn—17)
+180(n D > % f(1,1,0,...,0)

+45(n 1)Ef(2 20-50)
108

J~ K=

This fifth degree formula which is applicable to three
or more dimensions and uses (8n® — 24n? + 22n + 3)/3
integrand evaluations takes the form

(10n% — 124n + 270)

Jr K= 370 7(0,0,0,...,0)
fo(loo . 0)
(5n—9)
360(n—1)(n—2)2f(1’ 1,1,0,...,0)
8 111
tam—nn—2 2 (22 i,o,...,o).
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Formula 3

10
Contribution of terms of (8) of the text for the integrand (1 + 2 x

are referred to be their associated subscripts and are grouped such that the first term
of a given order is at least a factor of 10 greater than the first term of the next order.

Multi-dimensional integrals

Table 6
20

i=1

The terms within each order are in decreasing order of magnitude.

The terms

ORDER

TERMS

2222244 222244 2222224 222444
22222224 222246 2222444 222224
22222244 2222226 22444 22,246
22,44,6 2227226

10!

22244 22222222 2222246 222446
2222222 24444 222222222 222222224
224444 22226 22248 22222226 2446
22266 222228 22224 2246

102

2444 22228 222222 222248 2444,6

22,2266 22466 24,66 2248 2244 2266
2222228 4446 4444 22448 2448 2226
22,68 2222222222 2228 22268 2227210

10-3

44444 2224 22222 22410 44,6 24,6 4,6,
2,2,2,4,10 22210 2222210 248 24,68 44,6,
26,6 448 268 444 468 4448 244 2,6,6,6 24,10

10-4

24410 228 226 66,6 2210 22610 2222 44,10
22212 2,610 2288 288 224 222212 224,12
24,12

10-3

6,8 22,12 48 6,6 4,6 6,68 4,6,10 4,10 488 6,10
88 2,8 2,10 238,10

9, error obtained using Formulae 1, 2, 3 and 4 of the Appendix and the three-point

Table 7

11 1
Gauss formula to calculate J‘ '[ J- f(x, y,z)dx dy dz.
—19-171

FORMULA
GAUSS
f(x’ ' Z) 1 2 3 4 27 points
31 points 23 points 19 points 27 points
cos (xyz) | —1-8 1-8 | —1-8 —0-03 —0-0002
sin (x2y%z?%) 100 —84 100 —1-2 —0-5

A fifth degree formula using only 2n? 4- 1 integrand

evaluations is

Jrx K=

(25n% — 115n + 162)

162

70,0, . ..,0)

109

14 — 5 3
—{—“S(W’—T‘) %f{'\/(g),o,

o SHVE) G0
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Multi-dimensional integrals

Formula 4

A seventh degree formula for three dimensions using
27 integrand evaluations can be obtained in the form

J = K= AOf(Oa 0’ 0) +A1 ;f(xl’()»())
+ A, ;f(xza X, 0) + 4, %:f(xs, X3, X3).

There are two possible choices for Ag, 4y, 4,, 43, X1, X2
and x;, thus:

Ay =0-1184868 or 0-1821729

A, = 0-0053074 0-0466670
A, = 0-0629095 0-0049431
A; = 0-0118472 0-0598136
x; = 1-2795819 0-8484180
x, = 0-7000973 1-1064129
x3 = 0-8550443 0-6528165

These formulae have the undesirable feature that one

of the abscissae lies outside the range of integration.

Estimate of the maximum error in best polynomial approximations

By G. M. Phillips*

By using Chebyshev’s equioscillation theorem and the well-known error formula for the inter-
polating polynomial, inequalities are derived for the minimax error in polynomial approximation.
These results are extended to piecewise polynomial approximations.

(First received September 1967)

1. Approximations over a single interval

Suppose a function f(x) is defined on [a, b] and that
f(n+1)(x) exists and is continuous on that interval. Let
pn(x) be the polynomial of degree not greater than n
which is the best approximating polynomial for f(x) on
[a, b] in the Chebyshev sense. By the equioscillation
theorem (see, for example, Davis (1963)), 3 at least n + 2
points on which
max | /(x) — pu(») |
a<x<b

is attained, with the error f(x) — p,(x) alternating in sign
over those points. Hence, by continuity, 3 at least
n -+ 1 distinct points, say xo, Xi,... X, on [a,b],
where f(x) — p.(x) = 0, and so we may write the usual
estimate for the error in the interpolating polynomial,

10 — polx) = E X0 B ) gy

(n+ 1!
where £, is some function of x.
Now let x& xf,....x¥ be the =zeros of
T,.((2x — b — a)/(b — a)), where T, (x) is the

Chebyshev polynomial cos ((n + 1)cos—!x). If we
let g,(x) be the interpolating polynomial for f(x) con-
structed at x&, x¥, . . ., xi, we will have

x—x3)...0x—xx)
(n+ !

7, being some function of x. Therefore

f(X) - qn(x) = f(n+l)(7)x)’ (2)
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max |(x —x3)...
agx<b

1
max |fx) — 4,091 < G

o (x— XN . max | D). (3)
asx<
Putting y = 2x — b — a)/(b — a) and
yE=Qxf—b—a)b—a)forr=0,1,...,n,

max |(x — x§)...(x — x})| =

a<x<b ’
G

Thus the inequality (3) gives
max |f(x) — g.(x)|

max
—1<y <1

[(y—y3) ... (y—yDl- @&

a<x<b
(b—a)"’?"l - (n+1)
< 22n+l(n 4 1)! .azlfz |f (x)l (5)
From the definition of p,(x), it follows that
max |f(x) — pa(x)|
a<xg<b
(b _ a)n+1 D)
S ZznTl(n + 1)! .argnf‘éblf (x)l- (6)
Also, from (1),
1
a?féb] f(x) — p(x)| > @+ D! a?gébe —Xg) e
c..(x —x,)|. min |f@+D(x)| (7)
a<x<b
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