Formula 4

A seventh degree formula for three dimensions using 27 integrand evaluations can be obtained in the form

$$J \approx K = A_0 f(0, 0, 0) + A_1 \sum_{P} f(x_1, 0, 0) + A_2 \sum_{P} f(x_2, x_2, 0) + A_3 \sum_{P} f(x_3, x_3, x_3).$$

There are two possible choices for A_0 , A_1 , A_2 , A_3 , x_1 , x_2 and x_3 , thus:

$A_0 = 0.1184868$	or	0.1821729
$A_1 = 0.0053074$		0.0466670
$A_2 = 0.0629095$		0.0049431
$A_3 = 0.0118472$		0.0598136
$x_1 = 1.2795819$		0.8484180
$x_2 = 0.7000973$		1 · 1064129
$x_3 = 0.8550443$		0.6528165

These formulae have the undesirable feature that one of the abscissae lies outside the range of integration.

Estimate of the maximum error in best polynomial approximations

By G. M. Phillips*

By using Chebyshev's equioscillation theorem and the well-known error formula for the interpolating polynomial, inequalities are derived for the minimax error in polynomial approximation. These results are extended to piecewise polynomial approximations.

(First received September 1967)

1. Approximations over a single interval

Suppose a function f(x) is defined on [a, b] and that $f^{(n+1)}(x)$ exists and is continuous on that interval. Let $p_n(x)$ be the polynomial of degree not greater than n which is the best approximating polynomial for f(x) on [a, b] in the Chebyshev sense. By the equioscillation theorem (see, for example, Davis (1963)), \exists at least n+2 points on which

$$\max_{a \leqslant x \leqslant b} |f(x) - p_n(x)|$$

is attained, with the error $f(x) - p_n(x)$ alternating in sign over those points. Hence, by continuity, \exists at least n+1 distinct points, say x_0, x_1, \ldots, x_n , on [a, b], where $f(x) - p_n(x) = 0$, and so we may write the usual estimate for the error in the interpolating polynomial,

$$f(x) - p_n(x) = \frac{(x - x_0) \dots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x), \quad (1)$$

where ξ_x is some function of x.

Now let $x_0^*, x_1^*, \ldots, x_n^*$ be the zeros of $T_{n+1}((2x-b-a)/(b-a))$, where $T_{n+1}(x)$ is the Chebyshev polynomial $\cos((n+1)\cos^{-1}x)$. If we let $q_n(x)$ be the interpolating polynomial for f(x) constructed at $x_0^*, x_1^*, \ldots, x_n^*$, we will have

$$f(x) - q_n(x) = \frac{(x - x_0^*) \dots (x - x_n^*)}{(n+1)!} f^{(n+1)}(\eta_x), \quad (2)$$

 η_x being some function of x. Therefore

$$\max_{a \leqslant x \leqslant b} |f(x) - q_n(x)| \leqslant \frac{1}{(n+1)!} \max_{a \leqslant x \leqslant b} |(x - x_0^*) \dots (x - x_n^*)| \cdot \max_{a \leqslant x \leqslant b} |f^{(n+1)}(x)|. \quad (3)$$

Putting
$$y = (2x - b - a)/(b - a)$$
 and

$$y_r^* = (2x_r^* - b - a)/(b - a)$$
 for $r = 0, 1, ..., n$,

$$\max_{x \in \mathcal{X}_n} |(x - x_0^*) \dots (x - x_n^*)| =$$

$$\left(\frac{b-a}{2}\right)^{n+1} \cdot \max_{-1 \le y \le 1} |(y-y_0^*) \dots (y-y_n^*)|.$$
 (4)

Thus the inequality (3) gives

$$\max_{a \leqslant x \leqslant b} |f(x) - q_n(x)| \le \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!} \cdot \max_{a \leqslant x \leqslant b} |f^{(n+1)}(x)|.$$
 (5)

From the definition of $p_n(x)$, it follows that

$$\max_{a \leqslant x \leqslant b} |f(x) - p_n(x)| \le \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!} \cdot \max_{a \leqslant x \leqslant b} |f^{(n+1)}(x)|.$$
 (6)

Also, from (1),

$$\max_{a \leqslant x \leqslant b} |f(x) - p_n(x)| \geqslant \frac{1}{(n+1)!} \max_{a \leqslant x \leqslant b} |(x - x_0) \dots (x - x_n)| \cdot \min_{a \leqslant x \leqslant b} |f^{(n+1)}(x)|$$
 (7)

^{*} Department of Applied Mathematics, University of St. Andrews.

and from the minimax property of the Chebyshev polynomials we have from (7) that

$$\max_{a \leqslant x \leqslant b} |f(x) - p_n(x)|$$

$$\geqslant \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!} \cdot \min_{a \leqslant x \leqslant b} |f^{(n+1)}(x)|. \quad (8)$$

Combining the results (6) and (8), by the continuity of $f^{(n+1)}(x) \exists$ some $\xi \in [a, b]$ such that

$$\max_{a \leqslant x \leqslant b} |f(x) - p_n(x)| = \frac{2}{(n+1)!} \cdot \left(\frac{b-a}{4}\right)^{n+1} \cdot |f^{(n+1)}(\xi)|. (9)$$

2. Piecewise approximations

Let us now approximate to f(x) by splitting [a, b] into k sub-intervals and using a polynomial approximation of degree at most n on each sub-interval. Let us choose the points of sub-division and the k approximating polynomials so as to minimize the maximum error. It is easily seen that the maximum error, say E(n, k), will be attained at least once on each sub-interval.

Let I_1, I_2, \ldots, I_k be the sub-intervals and let $x_1, x_2, \ldots, x_{k-1}$ be the sub-dividing points. Then from (9) we may write, for $r = 1, 2, \ldots, k$,

$$E(n,k) = \frac{2}{(n+1)!} \left(\frac{x_r - x_{r-1}}{4}\right)^{n+1} \cdot |f^{(n+1)}(\xi_r)|, (10)$$

where $\xi_r \in I_r$ and $x_0 = a$, $x_k = b$. Thus

$$\left(\frac{(n+1)!E(n,k)}{2}\right)^{\frac{1}{n+1}} = \frac{1}{4}(x_r - x_{r-1}) \cdot \left| f^{(n+1)}(\xi_r) \right|^{\frac{1}{n+1}}$$
(11)

and

$$k\left(\frac{(n+1)!E(n,k)}{2}\right)^{\frac{1}{n+1}} = \frac{1}{4}\sum_{r=1}^{k} (x_r - x_{r-1})$$

$$\left| f^{(n+1)}(\xi_r) \right|^{\frac{1}{n+1}}. \quad (12)$$

As $k \to \infty$, the largest sub-interval $x_r - x_{r-1} \to 0$ and we may replace the right side of (12) by the Riemann integral, giving

$$\lim_{k \to \infty} k^{n+1} E(n, k) = \frac{2}{(n+1)!} \left\{ \frac{1}{4} \int_{a}^{b} \left| f^{(n+1)}(x) \right|^{\frac{1}{n+1}} dx \right\}^{n+1}. \quad (13)$$

The special case of (13) with n = 1 is given by Ream (1961).

Returning to (10), at least one sub-interval I_r must have length not greater than (b-a)/k, so that

$$E(n,k) \leq \frac{2}{(n+1)!} \cdot \left(\frac{b-a}{4k}\right)^{n+1} \cdot \max_{a \leq x \leq b} |f^{(n+1)}(x)|.$$
 (14)

Similarly at least one sub-interval must have length not smaller than (b-a)/k, giving

$$E(n,k) \geqslant \frac{2}{(n+1)!} \cdot \left(\frac{b-a}{4k}\right)^{n+1} \cdot \min_{a \leqslant x \leqslant b} |f^{(n+1)}(x)|.$$
 (15)

From (14) and (15), by continuity of $f^{(n+1)}(x)$, \exists some $\xi \in [a, b]$ such that

$$E(n,k) = \frac{2}{(n+1)!} \cdot \left(\frac{b-a}{4k}\right)^{n+1} \cdot |f^{(n+1)}(\xi)|.$$
 (16)

References

DAVIS, P. J. (1963). Interpolation and Approximation, Blaisdell, New York.

REAM, N. (1961). Note on "Approximation of Curves by Line Segments", Mathematics of Computation, Vol. 15, pp. 418-419.