User control in a multi-access system

By A. G. Fraser*

Administrative controls in an operating system must involve decisions about user status and
permitted activity. The mechanisms are traditionally ad hoc and reflect the multitude of curious
relationships which usually exist in any organised society. It is also usual to find them distributed
through the software complex. This paper suggests a centralised and uniform approach in which
a common notation is used to describe all conditions governing status and privileged activity.

(First received October 1967)

The multiple-access system for the Titan computer at
Cambridge contains a variety of controls which dis-
criminate against some users to the presumed advantage
of others. Controls of this type are an essential feature
of any operating system that supervises a shared facility,
although it is usual to find that the detailed design is
particularly ad hoc. The Titan system is not unusual in
this respect and one can observe a variety of different
control mechanisms each responsible for exercising
control over a different sphere of activity. In this paper
I suggest that the control mechanism should be centralised
and that the rules of discrimination should be concen-
trated at one point and held in a form that facilitates
change.

Imagine a multi-access system in which there is a disc-
based filing system providing time-sharing facilities
simultaneously to a number of different users. In addi-
tion to work-load administration, all I/O operations
are handled centrally. Some of the operating system
runs in a special privileged mode but as much as possible
works in the mode normally associated with user
programs.

The system will give controlled access to files so that
one user’s property is protected against unwarranted
interference or inspection. It will also require evidence
of authority when one user attempts to create a file
that is to be charged to someone else. A password, or
similar device, will be used to prevent one person mas-
querading as another and special checks will need to be
made to prevent one person discovering another’s pass-
word.

Those parts of the system which operate as normal
user programs will need to use facilities that are not
available to the general public. There may be an incre-
mental file dumping program which will need to be able
to read all files on the disc, and the I/O routines will
require similar facilities. The work-load scheduling
program (hopefully a centralised function) will also need
special privileges if it is to be able to monitor system
performance.

There will undoubtedly be flaws in the security pro-
vided, and arrangements for some form of policing will
be needed. Similar requirements will be made by the
management who will wish to monitor user activity as

well as instigate changes. Finally, a special ‘way in’ to
the system will be required to deal with corrupted pass-
words or malformed system files.

In each of the above examples of control, the system
must decide whether or not to allow a user program to
proceed with a requested activity, and this decision will
be based upon some special characteristic of the job,
the circumstances that surround it, or the information
on which it is operating,.

Central control

In a number of the examples quoted above, the
control could be described as a restraint on some user,
but this is not exclusively so. The incremental dump
program requires privileges but cannot be identified
with a particular human being and there are utility
routines that require privileges but which themselves
are used by the non-privileged user. So it was with the
Titan system, which associated privileges with users,
that we ended up by inventing ‘pseudo-users’ and
adopting other unsatisfactory expedients.

Expressed in its simplest form, a control system should
be based upon a free standing list of declarations of
the form:

‘Allow (or deny) activity 4 if Condition C is True’

. 1)

I shall refer to this as the Activities List.

A central control routine should be used to process
this list and answer the question:

‘Is program P allowed to perform activity 4?°
.. 2
Furthermore the mechanism should be designed to be
free from unnecessary restraint so that further changes
to the system may be contemplated.
It is assumed that each activity can be identified by
a unique name. In many cases it will be convenient
to use a mnemonic since activities are not usually
identified by simple names. Some mnemonics could be:

DISCABS Reference to the disc store directly
using actual hardware addresses.
OWNER CR Creating a file directory for a new file

owner.

* University Mathematical Laboratory, Corn Exchange Street, Cambridge.

12

¥202 Iudy 61 U0 3senb Aq yEzZyZ/zL/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

User control

READNOCHK Access to a file without satisfying the
usual privacy checks.

In order to build an activities list the operands used
in the conditional expressions also need to be identified.
Two of the operands used in the Cambridge system are:

USER The unique identity of the individual
responsible for a single computer run.

The unique identity of the program
being obeyed (for example: FORTRAN

COMPILER).
The following is a possible section of an activities list:

1. Allow DISCABS if COMMAND
= ‘FILE MANAGER’.

2. Allow DISCABS if (USER = ‘BILL’ OR USER
= ‘HARRY’) AND COMMAND = ‘DISC
POSTMORTEM’.

3. Allow READNOCHK if COMMAND = ‘INCRE-
MENTAL DUMPER’ OR ((USER = ‘BILL’ OR
USER = ‘HARRY’) AND COMMAND = ‘FILE
POSTMORTEM’).

This list will be held in the computer while the system
is running and will be scanned by the control routine.
It is therefore essential to use a stored format that
facilitates rapid processing by the control routine. In
the Cambridge system the activity list contains fixed
length entries and each conditional expression fits into
a pre-determined structure. The list is held in one of the
files that is used by the operating system itself, but there
are special arrangements that allow the administration
to update it while the system is running. As is usual
in these circumstances, we have chosen to compromise
between full flexibility and rapid processing.

COMMAND

Program status

Now, we may also observe that the Activities List
contains activity names and conditional expressions and
that, so far, nothing has been said about the forms
which individual terms of the expression may take. For
example, a single term might be a Boolean function and
unnecessary duplication could be avoided by using
appropriate function definitions. Thus a Boolean
function called SYSTEM PROGRAMMER might be
defined by the expression:

USER=BILL or USER=HARRY

The Activities List would then contain entries which
include references to SYSTEM PROGRAMMER, for

example:

Allow DISCABS if SYSTEM PROGRAMMER and
COMMAND = ‘DISC POSTMORTEM’.

Functions of the type described above will, hence-
forth, be called Status Declarations and a central list
of these will be called the Status List. Its entries will
take the form:

‘Allow (or deny) status S if condition C'is true.’

(€)

13

The procedure for handling this list will be almost the
same as that required for the Activities List, and so a
second entry to the control routine will be used to
answer questions of the form:

‘Is user P entitled to status S?” . N)]

I shall assume throughout this paper that the status
term S carries no parameters, although such an extension
would be consistent with the scheme described here.

Composite activities and status

System performance can be further enhanced by the
use of expressions in which distinct activities are identi-
fied. For example, the expression (41 and A2 and A43)
would represent a composite activity which involved
the three distinct activities A1, 42, and 43, and it could
be used in place of the single activity name in one
Activity List entry. In this case the single entry would
authorise any or all of the individual activities involved.

This device can also be used to advantage in the
Status Lists so that declarations of the following form
would be permitted:

‘Allow status (S1 and S2 and S3)if ’

By using activity and status expressions in this way
one can hope to save space in the respective lists, but
system performance can also be improved by making
composite activity and status demands acceptable input
conditions to the control routine. Entries of the follow-
ing type could be permitted:

‘Ts user P entitled to status (S1 and S2)?

In the system used at Cambridge the activity expres-
sions are represented by Boolean vectors in which there
are as many elements as there are possible activities.
Condition evaluation is thereby conveniently interpreted
in terms of logical operations on these vectors.

Remembered decisions

It is normal for an operating system to seek increased
performance by remembering certain information about
a user program even though that information could be
re-computed at will. Thus, for example, it may choose
to determine the truth of the term SYSTEM PRO-
GRAMMER at the start of a run and thereby avoid
subsequent re-evaluations.

An almost analogous situation exists with information
that is more difficult to re-constitute. When a user first
logs into the system he may be asked to prove his
identity by quoting a password, or something similar,
and the system would remember that this had been done
satisfactorily. ~The user would be given status
IDENTITY PROVED. If subsequently the user asked
to use a restricted activity the system would associate
the value TRUE with any reference to the status
IDENTITY PROVED.

If the validity of a status decision can change there are
dangers involved in the use of remembered decisions.

¥202 Iudy 61 U0 3senb Aq yEzZyZ/zL/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

User control

As with all redundant information of this type, care is
required if the source of the information itself changes.

One solution would be to make the central control
routine distinguish between three values of a remembered
status decision: True, False and Uncertain. Then, if
the status were uncertain the control routine would
evaluate the status before proceeding, and it would
record the decision reached in order to avoid subsequent
evaluations. With this mechanism in force, one could
simply arrange to mark appropriate remembered status
decisions as uncertain when a change in circumstance
threatens their validity.

In the Cambridge system many of the remembered
status decisions take only two values: True and
Uncertain. This means that successful control checks
can be made quickly but more work has to be done
when a user attempts to do something illegally. Pro-
gram speed is also enhanced by establishing certain
status names that directly correspond to activity names.
For example, the status name S-READNOCHK might
be used in the following activity list entry:

Allow READNOCHK if S-READNOCHK.

Once a user has established the status S-READ-
NOCHK, permission to access a file can then be granted
with minimum delay.

There are two further activities which are used by
commands that involve remembered status decisions.
One checks the status value, causing it to be remembered,
and the other unsets a remembered status. No separate
attempt is made to unset a status value during the
execution of one command even when the conditions
which led to that status setting themselves change.

Control decisions are not always made with a fre-
quency that is high enough to justify special treatment,
and the price paid for a central and general purpose
mechanism may therefore be quite modest. For the
few control decisions that are made with high frequency,
the device adopted at Cambridge is based upon that
described above; a single status is associated with the
activity concerned so that a single test is all that need
be made on most occasions. In these special cases the
single test can be made outside the general purpose
routine and the latter will only be called into play if the
test fails.

Facilities and property

It is invariably the case that a general purpose pro-
cedure is less efficient than a specialised routine, but the
actual costs may often be small in comparison with the
total operating cost or the advantage of a compact and
flexible design. However, there is one form of specialisa-
tion that may be worth making. It involves a distinction
between restrictions on the use of communal facilities
and restrictions that ensure the privacy of private
property. This distinction is, of course, only a matter of
convenience since control is always exercised when a
program requests a particular activity.

Files, magnetic tapes, and exchangeable discs are

14

examples of items that may be treated as private property.
The system will maintain a directory of such items so
that they may be identified and serviced automatically.
In addition each will have a possibly unique set of con-
ditions that govern its use, although the number of
distinct modes of use will be limited. In general, there
will be a complete set of conditional statements for each
object and these will define the acceptable conditions
under which each activity type is allowed.

One might also expect a significant traffic in new and
discarded objects so that the system directories will
require regular updating. Similarly, the set of condi-
tional statements associated with each object will need
to be deleted or extended. But since both operations
are usually linked to one event (e.g. file access) there
would seem to be some value in combining the Activity
Conditions with the conventional directory entry.
Fortunately this can be done without loss of facility
since the particular activities involved will only be
relevant when one particular directory is being accessed.
But some facility will be lost if the directory entries are
not regarded as an extension of the central Activity and
Status Lists or if a separate routine is used to process
them.

The system design could therefore be as follows:

‘Each property directory will contain statements of
types (1) and (3) where these statements apply only to
the particular set of property administered by the
directory concerned’ N)]

The control routine will be furnished with two more
entry points which will combine the central lists with the
lists contained in one property directory in order to
answer questions of the form:

‘Is user P allowed to perform activity 4 on property

governed by entry E in directory D° . . . (6)
and

‘Is user P entitled to status S when handling property

governed by directory D (7))

New control statements

Whenever a file is created a new set of conditions will
be added and these will control the various ways in
which the file can be used. The ability to create a new
file would necessarily imply the ability to specify these
conditions. To change the conditions after the file has
been created will be regarded as one mode of file use
and should be controlled accordingly.

From time to time the central list of Activities will
need to be changed and this will need close control.
But there is no reason why this control, like all others,
should not be exercised by the central mechanism itself.
The act of updating either the central Status List or the
list in one property directory would be a recognised
activity and would be subject to the appropriate
conditions.

The right to create new entries in the Activities List
will itself be subject to a control that dictates the type

¥202 Iudy 61 U0 3senb Aq yEzZyZ/zL/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

User control

of conditions that may be used as well as the circum-
stances under which extensions are permitted. Similarly
each entry in these lists will be subject to different forms
of restraint; the leader of a group can change its
membership but cannot add a new group. For this
reason, the status entries and the entries in the central
activities list should each have one associated condition
that determines when updating is allowed. In this
respect property descriptions, Activity descriptions and
Status descriptions are treated similarly.

Recursion

I have already suggested that a status description
plays the role of a Boolean function and can be com-
pounded into any conditional expression, and I do not
consider it necessary to prohibit one function from using
another. However, the structure of the control lists
must be restrained in order to guarantee that the system
does not come to a loop stop. For this reason recursion
must be ruled out.

It is probable that, during the evaluation of a con-
ditional expression, the system will be asked to perform
a restricted activity. Therefore, to avoid any chance of
a non-terminating sequence of checks, certain restriction
must be lifted while evaluating one condition. At
Cambridge this result is obtained by setting the necessary
status values when the control routine is called. In
fact, the operating system holds a short list of routine
names and with each are details of status values that
are unconditionally assigned when the routine is called.

Now, the lists of activity and status checks will be
extendible, and it is necessary to devise a mechanism for
doing this that does not interfere with system per-
formance. In particular, it must not be possible for
someone to devise a ‘pseudo’ status entry that takes
advantage of the restriction-free mode in which con-
ditions are evaluated. To a substantial extent this risk
can be diminished by removing any possibility of side-
effects so that the only product of evaluating a status
condition can be a single Boolean value. A further
restraint would be provided by restricting the notation
so that only certain data can be used; but care is required
if one is to avoid loss of useful flexibility.

The Cambridge system

That part of the Titan Operating System that could
conveniently be modified has been re-written to use a
central control routine. Each of the activities controlled
by this routine is given a unique number, n, and the
internal identifier of that activity is the single computer
word in which the nth binary digit is non-zero. For
example, the value 00100000 identifies activity number 3
which might be the act of adding a new file directory
to the system.

There is one central directory in which a typical entry
E; contains a predicate P; and a binary value 4;. If P,
is true for some user, then the value of A; is the logical
sum of the identifiers of activities permitted to that user.
For example, if P; is equivalent to “User name =

15

‘FRED’ ” and if 4; = 0010010000 then the user called
FRED will be allowed to perform activities numbered
3 and 6. Of course, the predicate P; is held in a compact
form that permits rapid evaluation and the range of
predicates is strictly limited. Each contains at most
four terms which can only be combined using the logical
operator AND. Each term must be chosen from the
following list (X is a parameter specified by the user):

USER NAME = X

USER OBEYING COMMAND X

USING FILES IN GROUP X

HAS QUOTED KEY X

USER HAS QUOTED HIS OWN PASSWORD
USER IS SITTING AT A CONSOLE

To decide whether a user can perform an activity with
identifier r, the system scans the central directory and
computes the logical sum of all 4; for which P; is found
to be true. This value is then compared with r and the
activity is authorised if the logical product of these two
values is not entirely zero. Expressed in another way,
the action is permitted if

r % PiA4;#0 ®)

In addition to the central directory, there are a number
of file directories in which a typical entry can either
describe a file or an authority. The entries which
describe authorities are precisely the same as those
held in the central directory. The file entries contain
information that is required for the proper adminis-
tration of the file system together with a value, s, which
dictates the extent to which the file is available for use.
The value of s is the logical sum of the permitted activities
and its value is usually set by the user when he creates a
new file.

Permission to perform activity r on an existing file is
only given to someone who is entitled to perform that
activity by virtue of authorities vested in him and
provided that the activity is also included in s. The
action is therefore permitted if

rs S PA; #0 ©)

The summation in this expression is performed over
entries in the appropriate file directory so that the file
owner can build up his own list of special relationships
with other users. Expression (8) is also evaluated over
the entries of a file directory when the activity involves
that directory. In all other circumstances the expression
is evaluated by scanning the central directory only.

The five ways of accessing an existing file (Update,
Delete, Change S, Read, Execute) have each been given
four distinct names in order to obtain greater variety in
the distribution of authorities. The identifier of Read
File is 00010 00010 00010 00010 and that of Execute File
is 00001 00001 00001 00001. Also, by convention, the
authority 11111 00000 00000 00000 is given to the
directory owner and the authority 00000 00000 00000
11111 is given to everyone. With these arrangements,
the file owner can choose s so as to make individual
files available in different ways to different classes of user.

¥202 Iudy 61 U0 3senb Aq yEzZyZ/zL/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

User control

Conclusion

The change to a central control (in so far as it was
attempted) seems to have been very successful and
removed many of the curious ad hoc restraints that pre-
viously caused trouble. The ability to re-define the
conditions which determine the use of central facilities
and the greater freedom which stems from a simpler
and more uniform approach have proved more useful.

Although the use of explicit conditional expressions
provides greater flexibility and makes for simpler soft-
ware, it seems to be necessary to provide some special

" purpose commands that use the basic facility to provide
specialised services. Not every user wants to use the

system in its most general form; many would value a
special purpose tool. Indeed, it may be that the value
of centralised control as described here is just that it
allows easy tailoring to special situations, a design
objective that would benefit most manufacturers of
software.

Acknowledgement

The invaluable opportunity to make mistakes and
learn by them was provided, in this instance, by the
Titan Multiple-Access project at Cambiidge University
under the direction of Professor M. V. Wilkes. The
work was supported by the Science Research Council.

Obituary
Dudley W. Hooper, M.A., F.C.A.

Dudley Hooper, whose death occurred on 12 January 1968,
was born 57 years ago. He was educated at Charterhouse and
at Clare College, Cambridge, and qualified as a Chartered
Accountant in 1935. For 32 years he then specialised in
management and organisation projects, with special reference
to mechanisation and, later, E.D.P. During the years
1940-45 he was on war service, mostly in Africa, and much
of this time he spent as a staff officer on commisariat organisa-
tion work. He then served as secretary or accountant to a
number of organisations and, after 6 years with the National
Coal Board, became the chief organising accountant to that
body, and was responsible for the development of the Board’s
computer projects. In 1964 he was appointed Technical
Officer to the Institute of Chartered Accountants in England
and Wales.

But meanwhile he had lectured over a wide field, notably
at the Northampton Polytechnic (now the City University)
together with Mr. A. Geary and Mr. M. Bridger, and in 1956
he led the little party of zealots in forming the London
Computer Group. A year later the British Computer Society
came into being, and Dudley Hooper was its first Chairman.
But behind this simple statement was in fact an extremely
difficult period which called for all those personal qualities
with which Dudley Hooper was fortunately endowed. These
included the wisdom of Solomon and the patience of Job.
Difficult as it was to get the Society off the ground, no-one
could then have foreseen that within 11 years the Society
would have grown to its present membership of some 18,000.
Dudley’s dedication was phenomenal; travelling constantly
as he did he still made time for conferences, lectures and
editorial work, and the first Memorandum and Articles of
Association of the Society were written by him personally.
He became President of the Society in 1961-62 and continued
to take an active part in the Society’s affairs. He was indeed
a member of the Editorial Board of this Journal up to the
date of his death, and was the founder and first Editor of the
Bulletin with valuable assistance from his wife.

Dudley Hooper was widely known for his papers and his
lectures, not only to technicians but to students. His
personality was genial, modest and engaging—he always

16

spoke at the level of his audience, without pedantry, and he
wore with pride a tie presented to him by the Chartered
Accountants Students Society. Indeed Dudley’s last pub-
lished work was a booklet for the General Educational Trust
of the Institute of Chartered Accountants in England and
Wales entitled The Computer as an aid to Management. It
went to press shortly before his death, and has thus been
published posthumously. The publication announcement
was followed immediately by an overwhelming demand for
copies. This is an indication of the width of the field in
which Dudley Hooper will be so sorely missed, and of the
debt owed to him by the fields of management (a subject
which he taught by precept and example), the accounting
profession, of which he was so distinguished a member, and
the world of E.D.P., in which he was so noteworthy a pioneer.
He occupies an unique place in the history of E.D.P., and in
the minds and memories of those whose pleasure and privilege
it was to work with him.

E. E. BoYyLEs

¥202 Iudy 61 U0 3senb Aq yEzZyZ/zL/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

