An algorithm for scheduling storage on a non-paged computer

By D. C. Knight*

A method is described of allocating core storage on a computer without paging facilities,
working in a time-shared environment. The algorithm includes techniques for the dynamic
repositioning of program segments, and the dumping of segments to a secondary store, in order
to enlarge and consolidate unused portions of the core store. The paper also gives the results
obtained from the random simulation of a system requiring the scheduling algorithm, to check
out the logic, and to provide patterns of behaviour.

(First received July 1967, and in revised form November 1967)

1. Introduction

This paper presents a method for allocating core storage
between multiple users of a computer that does not have
paging facilities. That is, the computer is used in the
conventional time-shared (or store-shared) mode, with
several users or jobs requiring core storage at any
instant. The users may be accessing the computer from
many remote terminals, or be running jobs via a standard
time-shared batch processing system, or a combination
of the two. The particular configuration used to imple-
ment the algorithm was an English Electric KDF9 com-
puter with 32K of core store, backed by a 4 million word
disc in addition to the standard peripherals. The storage
scheduling was required as part of an experimental
system (called DEMOCRAT), being developed at the
National Physical Laboratory, Teddington, to provide
multi-access and time-shared facilities on the KDF9.

2. The DEMOCRAT system

In order to explain the scheduling problem a brief
description of the DEMOCRAT system is required. A
basic self-contained segment of program is called a
module, and is normally held as a file on the disc. It
has associated with it various parameters such as:
number of core words required, number of 40-word disc
sectors occupied, a unique identifier and security pass-
word, and several priorities. The priorities include a
software priority giving the importance of the job
relative to central processor time, and a space priority
giving the importance relative to core store allocation.
The module also contains an area for dumping the
machine registers such as the nesting stores, the link
address, the subroutine jump nesting stores, and the
modification registers. This dump gives the values of
the registers when the module was last receiving service
from the central processor, i.e. was last ‘current’.

The KDF9 operates under control of a master pro-
gram which is resident in core, and runs in a privileged
mode called Director mode. This routine is activated
by, and recognises, all interrupts and requests for special
services such as input/output. Before handing control

back to a normal-mode program the Director may set
hardware storage lock-outs, using the base address and
number of locations registers. In this way several seg-
ments of program can occupy core store, with only one
receiving service at any time, and each protected from
the other by storage lock-outs.

Under DEMOCRAT the modules in core store are
linked together on a chain of latched modules. When
the current module causes an interrupt or requests some
service, a jump is made to the Director mode routine,
called INTERFACE. Its first job is to dump the con-
tents of all registers into the module area. Then it
recognises and processes the interrupt or provides the
service (e.g. by initiating a call to a service module).

INTERFACE then selects the next module on the
chain to be made current by choosing one such that:

(a) it requires further processing, or has been called by
another module, i.e. it is ‘active’,

(b) it is not inhibited waiting for the completion of an
interrupt or a service,

(c) it has the highest software priority of modules
satisfying (a) and (b).

Before returning control to the selected module, the
registers are reset from its dump area, and the storage
lock-outs are set. By suitably defining and dynamically
adjusting the priority system, DEMOCRAT avoids
long delays on low priority jobs, while ensuring quick
response for high priority ones.

3. Storage allocation

A particular service handled by INTERFACE is the
loading and latching to the chain of a new module.
This may be required as a sub-module or new segment
of an existing module on the chain, or may be a new job
initiated by a remote user or the background system.
This service is provided by a special module called
WANTED, which contains the scheduling algorithm.
WANTED checks the validity of the new module,
attempts to find room for it in the core store, and if
successful reads it down from the disc before latching it
to the chain.

* National Physical Laboratory, Teddington, Middlesex, England (while on leave of absence from the Computing Research
Section, C.S.I.R.O., Australia); now at King’s College, Strand, London, W.C.2.

¥20Z UoJen g1 uo1senb Aq 2G2yzy//LL/L/L L/8IoIe/|ulwood/woo dnoolwapede//:.sdiy woly papeojumo(

Storage scheduling

The KDF9 storage lock-out facility requires that a
currently available piece of core be a contiguous set of
32-word segments. Thus modules must be located in
continuous blocks of store to make use of this protection.
At any instant when a new module is required to be
loaded, the store consists of alternating used and unused
blocks, with the lower part allocated as system resident
area, and not available to the loading procedure. Each
latched module may be thought of as being preceded by
a gap, which may be of zero length measured in 32 word
units (see Fig. 1).

Hopefully there will exist a gap which is large enough
to contain the new module, in which case loading can
proceed immediately. In practice this is unlikely, so
that a strategy has to be adopted aimed at enlarging the
gaps until one becomes large enough.

Each latched module can be thought of as having
one of five statuses, which change dynamically:

(@) Inactive and erasable, i.e. no more servicing is
required, and the space occupied is re-usable,

(b) inactive, to be dumped on the disc before the space
can be re-used,

(¢) active and movable in the store,

(d) active and both movable, and able to be dumped
(if its space priority is lower than the new module),

(e) active but immovable, either to disc or in store.

The status is determined by consideration of the type of
module, and whether it is waiting for some service or
interrupt to be completed. That is, a module can be
dumped to the disc and retrieved later, or moved in the
store, if its exact location is of no importance to any
other module, and it is not in the middle of an I/O
transfer.

The first improvement to the gaps is made by un-
latching from the chain and erasing all modules of
status (a). This will free all areas no longer required.

The next thing, if this fails, is to locate movable regions
in the store—that is sequences of gaps and movable
modules (status (), (¢), or (d)) bounded by immovable
ones (or the boundaries of core store). To each region
is associated a region gap, which is the sum of all gaps
in the region. If one of these region gaps is large enough,
then the region is consolidated by moving each module
into the gap on its left (down the store) in turn, accumu-
lating the gap on the right until it is large enough for the
new module.

If no region gap is large enough, then each region is
inspected to see if the modules in it will fit into other
gaps outside the region or other region gaps, so that the
region gap can be made large enough. The modules are

0 3K

checked in decreasing order of size, so as to minimise
any movement that may result.

If this proves successful for a region, then the modules
for which gaps have been found are moved out, and the
remaining ones moved down the store to consolidate
the region gap until it becomes large enough for the new
module to be loaded. When moving modules into
another region, it may also be necessary to move those
region modules down the store to consolidate the gap.

The final stage of the loading strategy is to see if the
region gaps can be made even larger by dumping onto
the disc some of the modules that cannot be moved out
into other gaps. First, modules of status (b) are inspected
in descending order of size in each region, to see if
dumping them would enlarge the respective region gap
to the required size (the gap being already augmented
by the modules which can be moved elsewhere). If
still no region is potentially large enough, then the same
procedure is tried for modules of status (d). If either
of these is successful for some region, then the necessary
modules are dumped onto the disc, all possible modules
are moved out of the region, and the remainder moved
down the store until the consolidated gap becomes large
enough.

A failure of all these techniques means that the new
module cannot be loaded at this time, and the WANTED
module gives up the attempt. In this case a further
attempt will be made to load when the module requiring
it is next being serviced.

Neither moving nor dumping of modules is performed
until the strategy has been shown successful in theory.
That is, no adjustments to the modules in core are
attempted until it is known that the final gap will be
large enough. However, while determining this, the
original status of the latched modules may have been
changed, due to an interrupt. To avoid trouble, each
module to be interfered with is first unlatched from the
chain, then its status is reassessed. If this indicates that
the module is no longer movable or dumpable as the
case may be, it is relatched unaltered, and the attempt
to load the new module is abandoned. This is justifiable
on the grounds that any interruption of WANTED will
be on a higher priority level than the module requiring
the service.

4. Dumped modules

Modules dumped onto the disc are of two types.
First, inactive ones are dumped rather than erased
because the next user will require the latest updated
version (this could apply to some system modules). A
flag is set in the original copy of the module held on the

32K

Resident { Gap 1 ’ Module 1 { Module 2 ‘ Gap 3 ‘ Module 3 ‘ etc. l

T
Gap2 =0

Diagram of core store allocation

Fig. 1.

18

¥202 YoJe\ ¢ uo 3senb Aq 2GZ¥Zy/LL/L/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Storage scheduling

disc, so that the next call will in fact cause the dumped
version to be loaded, and not the original. Secondly,
active modules are placed temporarily onto the disc to
make room for modules with higher space priorities.
However, it is imperative that these dumped modules
find their way back onto the latched chain. To achieve
this a queue of dumped active modules is kept and
inspected at regular intervals. This queue contains both
the identifiers and the software priorities of the modules.
At each inspection of the queue the priorities are
increased, and compared with the priorities of the
latched chain. If a dumped module is at a higher level
than anything on the chain, it is loaded back into the
store by WANTED, and will receive instant servicing.
In this way no dumped module will stay out of the
chain for too long, although a very low space priority
module could be dumped several times before it has
completed its activities. The queue is also limited in
size, so that when full, no further dumping is allowed
until there is room again.

5. Discussion

Fig. 2 gives a simplified flow diagram of the scheduling
algorithm.

The problem is very much different from that
experienced on a computer with paging facilities. In
the latter case the core store is allocated in pages or
sections, each having protection facilities. The scheduling
becomes a matter of finding enough free pages to satisfy
the demand, with some pages being dumped to a
secondary storage device, but with no necessity to
shuffle sections of store to improve gaps.

It is obvious that with this type of problem, the tech-
niques to search for an optimum gap are in theory very
many. For instance when searching for a gap into
which to move a module from one region, a secondary
level of moving could be performed in a second region,
to move modules out into other gaps again, and so on.
Similarly dumping could be performed at many levels.
Essentially the problem could be tackled by the recursive
use of one level of moving and dumping, to allow deeper
levels to be reached.

It would also be desirable to simulate these multi-level
searches in order to find the optimal strategy in terms of
the number of words moved and dumped, before actually
performing any moving or dumping. Unfortunately
this optimisation could be very lengthy in terms of
machine time, and could result in a great deal of move-
ment both of words in store, and between store and disc.
In fact it is necessary to compromise at some point and
testrict the technique to a reasonable level of moving
and dumping.

Only one level of dumping was allowed in the imple-
mentation to limit the use made of the disc. It was felt
that if too many transfers were made, the machine
would be tied up waiting for them to be initiated, and
the disc itself could soon become overloaded. Two
levels of moving were allowed to avoid excess word

19

shuffling and to prevent the algorithm becoming too
complicated. With a basic module such as WANTED,
which by its nature must remain resident in store, an
effort must be made to limit its size. Dumping was
given a lower priority than moving, even though a disc
transfer once initiated can proceed in parallel with other
computations. However, this was again considered
necessary as another means of limiting disc usage.

As an extension to this work, it is possible to divide
the scheduling algorithm into two logical parts each
contained in a separate module. Only the first part
would have to be resident in core, thus freeing more
space for general use, and also eliminating the need to
keep the algorithm to a minimum size and complexity.
The first part would attempt to load the new module
into an existing gap in core, without any further mani-
pulation. Only if this failed, would the second part be
needed. This would then attempt to find space by
moving and dumping the modules on the chain.

Part one of the scheduling must be capable of loading
part two into a suitable gap. If such a gap cannot be
found, then the loading attempt fails. This implies a
recursive use of part one. The recursive facility could
be extended to allow the loading of other modules some-
times required by the WANTED module, and normally
resident in core. This would return even more core
store to general use.

6. Simulation and testing of the algorithm

In order to test out the logic of the algorithm it
was first coded in ALGOL, omitting the actual move-
ment of words within the store. A random number
generation subroutine was included to produce two sets
of random variates. The first sequence was used to
simulate module status by selecting a value between 0
and 5 from a rectangular distribution, thus giving an
equal likelihood for all five statuses. The second
sequence was used to simulate the new module size,
by sampling a truncated approximation to a normal
distribution to give a value between 1 and 60.

k
(x =Xy
i=1

taken from a suitable rectangular distribution). The

+ 1, where k> 10, and a < u; < b is

available storage was set arbitrarily at 60 units as this
gives 30K words in units of 500 words. Because new
modules, or modules unlatched and .moved, are latched
to the end of the chain, the order of the links in the
chain is not the order of the modules in core. The
WANTED module keeps tables giving for each module
in store such particulars as size, starting address, starting
address of previous link in chain, and size of gap pre-
ceding the module. These tables are kept up to date
and used to formulate the loading strategy for each
request.

By varying the parameters k, a, b of the random number
generator for module size, various sample sets have been
loaded and statistics compiled, to determine the effi-

¥202 YoJe\ ¢ uo 3senb Aq 2GZ¥Zy/LL/L/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

| Enfi_l

Check that the new
module has a valid
identifier

Form statuses of
latched modules

Is there a gap Yes

Storage scheduling

large enough?

No

Erase all possible inactive
modules from the chain,
increasing gaps

Load new module
into the gap and
latch it to the end
of the chain

—>~| Exit ‘

Is a gap now Yes N
large enough ?
No
Locate movable regions
and calculate region gaps
Move modules in
Is there a Yes the region down the
region gap —————>————| store, consolidating
large enough? gap in upper part
of region
No
For each region in turn -
Augment region gap by No Is a gap in
each module which can the region now |——— “Yes
be moved into another large enough? €
gap or region I
Move possible modules
h out of the region into
g,;t, glc-:;valarge Yes other gaps, or regions -
enough? . after moving down
store to enlarge gaps
No 4
For each region in turn -
Augment region gap No Is a gap in Yes
by all modules which the region now
can be dumped to disc large enough?
i Dump necessary
g,,; lr]%g‘;,olr;rge Yes | modules to the disc
? increasing gaps in
enough the region
No
This new
module cannot
be loaded yet
Exit

Fig. 2. Simplified flow diagram of scheduling algorithm

20

¥202 YoJe\ ¢ uo 3senb Aq 2GZ¥Zy/LL/L/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Storage scheduling

Table 1 Results from simulated runs (total store = 60)

SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5
Mean module size 6 11 9 21 12
Standard deviation 4-5 8-5 7-5 16 4
Total number loaded 128 128 128 128 128
Number loaded directly 108 98 101 88 95
Number loaded after moving 15 12 16 10 12
Number loaded after dumping 4 12 10 27 18
Number loaded after moving and dumping 1 6 1 3 3
Number delayed at least once 22 34 26 51 43

Table 2 Simulated sample 1 (mean 6, s.d. 4-5)

SIZE OF MODULE 1-5 6-10 | 11-15 | 16-20
Total number loaded 65 36 24 3
Number loaded directly | 63 30 13 2
Number of delays 2 10 12 5
Number moved 18 4 2 0
Number dumped 0 2 3 0

modules are delayed more than once. Approximately
509%; of delays have been shown to be the result of status
changing during a loading attempt. This would not
be so frequent in a real situation, since in the simulated
case each status is equally likely at any moment of
sampling.

As might be expected in a sample with a low mean
size, fewer modules need to be dumped or delayed than
in a sample with a large mean because there are more
gaps which can be manipulated. The amount of move-

Table 3 Simulated sample 2 (mean 11, s.d. 8-5)

SIZE OF MODULE 1-5 6-10 11-15 16-20 21-25 26-30 31-35
Total number loaded 40 31 20 15 15 4 3
Number loaded directly 40 27 15 8 5 3 0
Number of delays 0 4 8 10 20 4 9
Number moved 12 7 4 3 1 1 0
Number dumped 1 6 1 3 4 2 2

Table 4 Simulated sample 5 (mean 12, s.d. 4)

SIZE OF MODULE 1-5 | 6-10 | 11-15}16-20 | 21-25
Total number 10 | 31 52 | 28 7
Number loaded directly| 10 | 27 | 37 | 17 4
Number of delays 0] 1222} 19 8
Number moved 3 10 7 1 0
Number dumped 0 31 12 7 0

ciency of the algorithm, and its behaviour under differing
conditions.

Table 1 gives a summary of the results for five such
sets, each loading 128 modules. Tables 2, 3 and 4 give
a further breakdown of the results for the first, second,
and last samples. They show the frequency, for different
sizes, that modules are (@) loaded into available gaps
without having to move or dump anything, (b) delayed
loading because of lack of space, and (c) moved or
dumped to make room for incoming modules.

The frequency of delays included the fact that some

21

ment around store is relatively constant for all samples,
as the gap size tends to be a reflection of the mean size
of modules as they leave store for one reason or another.

With a very large mean such as sample 4, the number
of delays rises considerably, as does the number of
modules dumped. This is the result of a fairly rigid
store structure, with few modules and therefore little
chance of finding a region which can be manipulated.

Sample 5 is very close to the distribution of jobs run
under the present time-shared batch processor on the
KDF9. The fewer number of small modules due to a
small spread, results in more dumping than with the
the other samples of similar mean size.

Acknowledgement

The DEMOCRAT system for the KDF9 computer,
and the associated file structure, were designed and
implemented at the National Physical Laboratory by a
team including Dr. J. L. Martin (now at King’s College,
London), Mr. G. G. Alway, Mr. B. A. Wichmann, and
Mr. M. Woodger.

¥202 YoJe\ ¢ uo 3senb Aq 2GZ¥Zy/LL/L/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

