A compiler optimization technique

By Mark Finkelstein*

A technique is presented for effecting more optimal machine code, as the result of compilation of
algorithmic language programs.
cated how this concept may be used in compilation schemes. The technique is particularly effective
on computers with multiple accumulators.

(First received February 1967, and in revised form November 1967)

In this paper I should like to discuss a particular type
of optimization, one which is normally performed when
a program is ‘hand coded’, but for which there seems
to be no simple way of providing optimal ‘algebraic
code’, and which is not normally performed by the
optimization phase of a compiler. n

Consider the following operation: Y a;. If we wish
i=1
to perform this computation, in ALGOL we write:

sum:= 0; for i:= 1 step 1 until n do sum:= sum + a[i];
M

Note that in most cases this computation will be per-
formed in a rather inefficient manner; there will be an
unnecessary fetch and store of sum for each iteration of
the loop. The hand coder would avoid this by making
use of a loop which formed a partial sum in the accu-
mulator and added to it on each iteration. In a problem
of this type, the inner loop compiled from ALGOL will
be about 679 slower than the hand coding, requiring
5 instructions as opposed to 3 when hand coded (these
numbers, of course, depend upon the instruction
repertoire of the particular machine).

This paper discusses a method of compilation which
will allow the above ALGOL program to be compiled
into roughly the same machine code as would be written
by hand. The type of optimization presented will effect
considerable saving when compiling for machines
which have a large number of high-speed registers.

The optimization feature which will enable us to
produce compilations as indicated above is the concept
of a ‘deferred store’. Basically, the idea is this: suppose
that the compilation has progressed to the point where
the source program has been translated into a collection
of nested macros, where we are now ready to generate
machine code instructions. The basic rule will be to
defer ‘store’ operations until the accumulator(s) which
contains the quantity to be stored is needed for another
computation. We hope that by holding the quantity
in the accumulator, it will be needed for a subsequent
calculation before the accumulator is needed again.
Obviously, this approach will fail when compiling for a
very simple computer, i.e. one which has only one
accumulator and no index registers. On such a machine,
the accumulator is needed for almost every instruction,

* University of California, Irvine, California.

22

The concept of a ‘deferred store’ is introduced, and it is indi-

and we would not be able to save a quantity in the
accumulator for very long. However, on a machine
such as the CDC 6600, where we have multiple accumu-
lators and index registers, it is quite possible to hold a
quantity in one of the accumulators over a period of
perhaps 20 or 30 machine instructions without hampering
the operation of the program over those next several
instructions. That is, we suppose (and in fact it is
generally the case) that most of the time, although we
have 7 accumulators, we can really do with 6 (at least in
the short run). There is no reason why the idea cannot
be extended, to hold simultaneously two or three
quantities in accumulators (or even index registers), if
this will reduce the number of accesses to main memory
significantly. In the example above, we can compile
the inner loop in four instructions, a fetch from memory,
an add, a test, and increment of index register.*
Effectively, in compiling the instruction

sum:= sum + alil;

the store instruction which would normally be generated
at the end of the compilation of the statement (the store
into SUM)t will be deferred, with the quantity SUM
held in the accumulator, and it will be found there when
it is needed again (which will be on the next iteration of
the loop). The remainder of this paper is concerned
with outlining how this concept of deferred store could
be implemented in a compiler.

In order to detail the description of the ‘deferred store’,
we shall suppose that we are using a system which is
approximately the Compiler Generator System of Com-
puter Associates, Inc. (Cheatham and Sattley, 1964;
Warshall and Shapiro, 1964). A detailed description of
the CGS system can be found in (Computer Associates,
1963). Basically, the system operates as follows: The
input string is ‘parsed’ by an analysis phase of the

* On the CDC 6600, counting instructions is not really the
proper way to count, as the instructions on this machine are very
heavily overlapped.

+ At the suggestion of the referee, to minimize confusion, we
shall adopt the convention that lower case italic letters indicate
source identifiers, and upper case letters represent the quantity or
location of the identifier once it has been (partially) translated into
the language of the machine. Thus, our references to sum will be
as an identifier in an ALGOL program, while our references to
SUM will be to the corresponding quantity or location in memory.

¥202 IMdy 61 U0 3senb Aq GozyZ/ze/L/ L L/elone/|ulwoo/wod dnosojwepeoe)/:sdiy wolj pepeojumod

Compiler optimization

compiler, which produces sets of nested macros repre-
senting an initial translation of the various instructions
of the input program. For example, the ALGOL
statement

a:=>b +c;
might be parsed into the set of macros
(ASSIGNMENT, (LOC, A), (ADDITION, B, C)).
Diagrammaticaily,

ASST—
2
LOC ADDITION
v B
A BC

The set of macros is then processed by an optimization
phase, the result of which is again a set of macros in
which various information has been added or changed.
The final phase of the compiler is the code generator,
which processes the macros into machine code. The
code generator constructs a table as it proceeds, the
table representing a simulation of the states of the
special registers of the machine. Now the code generators
can effect considerable saving of space and time in the
compiled program if when a macro requests that a certain
quantity be loaded into an index register, it checks its
table and finds that the quantity need not be fetched
from storage, because the quantity is already residing
in another high speed register. The idea of using code
generators in this syntax-directed compiler represents an
improvement over the original syntax-directed compiler
(Irons, 1961), because here we are no longer bound to
produce stereotyped translations of macros, but may
use information about the context (provided in this
simulation of the registers) to produce more efficient
code.

The implementation of the ‘deferred store’ occurs in
the code generation phase in conjunction with the
optimization phase. Rather than set down an algorithm,
which would necessarily be quite complicated, 1 shall
work through an example in detail, from which hope-
fully the reader will be able to construct an imple-
mentation of this process.

Consider the following parse of (1):

ASST ——>SUM
|~ CONSTANT — 0
LOOP — 1

ASST —— SUM
> ADD — > SUM
| > ARRAY VAR — A

f— SUB-
SCRIPT
¥
1
ENDLOOP (1, 1, N)
2

This set of macros contains essentially all the infor-
mation necessary to compile (1) into machine language.

23

In order to implement the deferred store algorithm, we
shall have to recognise the common sub-expressions in
this set of macros. Two expressions (in the algebraic
language) are common sub-expressions if they are
identical strings of symbols, and if they represent the
(computation of the) same quantity. That is, whether
two identical expressions are common sub-expressions
(CSE’s) or not depends very highly on the context in
which they occur.

We suppose the optimization phase has recognised

ASST —> SUM <«

CSE’s, so that (2) becomes
commén sub-
expression |
"> ADD —> SUM < ‘;

ASST —> SUM —
> CONSTANT — 0
> ARRAY VAR —>A
'> SUB-

—LOOP —1
SCRIPT
l

Y

I

— ENDLOOP (I, 1, N)

3
When the statement ‘sum:= 0;’ is processed, an instruc-
tion of the form ‘load accumulator with constant 0’ is
generated, but the ‘store accumulator in location SUM’
(hereafter STO SUM) which would normally be
generated at this point is deferred, since SUM is a CSE,
and hence we may have use for it again without needing
a memory reference. The fact that SUM is now residing
in the accumulator and not in memory is noted. The
loop control is now processed, and we assume that no
instructions involving the accumulator are generated,
so that we are still deferring the store instruction. When
the statement ‘sum:= sum + a[i];” is processed, the
left-hand side is noted to be the same as the destination
of the currently deferred store. It is noted, then that the
deferred store may be ignored, as this new assignment
statement will supercede it. The quantity SUM is
noted to live only in the accumulator. In the compila-
tion of the right-hand side, the quantity SUM is known
to be in the accumulator, and consequently no fetch
from memory need be made. (Indeed, no fetch from
memory can be made!) The instructions for ‘ADD A[I}’
are generated, completing the processing of the right-
hand side of the statement. To complete the processing
of the left-hand side, an instruction STO SUM would
normally be generated, but by our deferred store
algorithm, we note again that SUM is again in the
accumulator, and defer generation of the STO SUM
instruction.

The end-of-loop processing is now performed. Let
us suppose for the sake of completeness that the accu-
mulator is needed to perform this processing. In this
case, immediately preceding the new use of the accu-
mulator, the instruction STO SUM would be generated,
and immediately preceding the transfer to the ‘top’ of

¥202 IMdy 61 U0 3senb Aq GozyZ/ze/L/ L L/elone/|ulwoo/wod dnosojwepeoe)/:sdiy wolj pepeojumod

Compiler optimization

the loop, where SUM is expected to be in the accumu-
lator, the instruction ‘load accumulator from SUM’
would be generated. In this case we would have gained
nothing, as we could not carry the deferred store to
completion.

Suppose on the other hand that the end-of-loop pro-
cessing does not require the accumulator. Then as we
complete the loop, SUM is still in the accumulator, and
at the time the transfer to the top of the loop is generated
a check is made to see whether that transfer is within the
region where the accumulator is expected to have the
quantity SUM in it. Since it is, this transfer can be
executed without losing the quantity SUM.

At the completion of the loop, code is generated for
the subsequent statements. Still, the quantity SUM is
in the accumulator. When the accumulator is first
needed, a line of code STO SUM will be generated, to
preserve the quantity SUM. Note that if the next
statement following the loop should require the quantity
SUM, this will be referenced in the accumulator rather
than from storage, providing that this occurrence of
SUM has been recognised as a CSE with the previous
occurrence.

We have chosen a particularly simple example for the
sake of illustration, and the reader will no doubt observe
that minor perturbation of the problem will render the
device of the deferred store inoperative. However, on
machines with multiple accumulators the device seems
to be potentially rather successful. Consider the
following matrix multiplication problem:

for i := 1 step 1 until n do
for j := 1 step 1 until n do
begin c[i, j] := 0
for k := 1 step 1 until » do
cli,j] := cli, j] + ali, k] X bk, j]; end

If we compile this program for a machine such as
CDC 6600, using our deferred store technique, the
innermost loop would involve an accumulation in the
accumulator of the products a[i, k] X b[k,j], which
would then be stored in c[i, j] only on completing one
iteration of the ‘j-loop’, at which time the address c[i, j]
would be changing.

The parsed program would look like Fig. 1 (we give
only the pertinent parts of the parse).

As has been observed by the referee, the machinery
necessary to perform this optimization is quite great.
For example to recognise common sub-expressions in
all instances requires a complete flow analysis, coupled
with a source language-level analyser which can deter-
mine the regions in which quantities do or do not change
their values. The following two examples illustrate this
point:

O A:=B+C) X D;
if B = 0 then go to LABEL;
D:=0

LABEL: E := B + C;

24

LOOP I
—> LOOP ——]J
ASST — CJ[I, J] <
> CONSTANT — 0 ,
—LOOP —> K ‘ common sub-
expression

ASST —C1, J] < | 5
> ADD — CJ[L, J] <’

—PRODUCT — A[l, K]

—B[K, J]

_» ENDLOOP (K, 1, N)
__, ENDLOOP (J, 1, N)
L ENDLOOP (I, 1, N)

Fig. 1

A:= B+ C) X D;
if B = 0 then go to LABEL;
C:=0;

LABEL: FE := B + C;

0y

Note that in (IT), ‘B + C’ is not a CSE, for ‘B 4+ C’ has
a different meaning in its second occurrence—C having
been set to 0 in the interim. In (I) ‘B + C’ will be a
CSE, provided that there are no other jumps to LABEL,
or (more sophisticated) provided that all other jumps to
LABEL already have ‘B 4+ C’ marked for CSE, and no
change to either variable in the CSE takes place.

This type of flow analysis is a difficult piece of work,
and the author is not suggesting that it be undertaken
solely for the purpose of implementing the deferred
store. However, as the demand for more and more
sophisticated compilers increases, the builders of these
compilers are led more and more in this direction. The
tools necessary to implement the deferred store may be
close at hand within this ‘software generation’. These
tools and some of the ideas set forth in this paper are
now being implemented in a restricted form, in the
LRLTRAN compiler of the Lawrence Radiation
Laboratory, Livermore, California. There, the deferred
store concept is partially implemented, requiring, how-
ever, that the source language programmer specify the
names of the variables which are to be kept in registers.
In our example (1), it would require that we name sum
to be kept in an accumulator. In the ‘ideal imple-
mentation’, this request would, of course, be generated
by the optimization phase of the compiler itself.

Acknowledgements

This work was performed while the author was
employed by Control Data Corp., Palo Alto, California.
I would like to express my thanks to them for their
support, and particularly to Messrs. Warren Cash and
Richard Bielsker for many fruitful discussions regarding
this work.

¥202 IMdy 61 U0 3senb Aq GozyZ/ze/L/ L L/elone/|ulwoo/wod dnosojwepeoe)/:sdiy wolj pepeojumod

Compiler optimization

References

CHEATHAM, T. E., Jr.,, and SATTLEY, K. (1964). Syntax-Directed Compiling, presented at the Spring Joint Computer Conference

April 21-23, 1964. (Computer Associates document # CA—64-1-R.)

Computer Associates (1963).
CA-63-4-SD, 1 July, 1963.)

Compiler Generator Systems Program Descriptions.

Irons, E. T. (1961). A Syntax-Directed Compiler for ALGOL 60, Communications of the ACM, Vol. 4, pp. 51-55.

WARSHALL, S., and SHAPIRO, R. M. (1964). A General-Purpose Table-Driven Compiler, presented at the Spring Joint Computer

Conference, April 21-23, 1964. (Computer Associates document 7 CA-63-4-R.)

Errata

‘Seasonal adjustment and forecasting in the presence
of a trend’, by R. W. Hiorns.

The ALGOL procedure presented at the end of the
above paper, which appeared in Vol. 10, p. 143, is
incorrect. The correct procedure is as follows.
procedure season (y, m, f, n, N, a, e, w, P1, P2, pred, pe);
value y, m, f, n, N, P1, P2; array y, f, a, e, pred, pe;
integer array »; integer m, N, P1, P2; real w;
comment This procedure calculates, simultaneously,
estimates of seasonal and trend constants by multiple linear
regression and provides forecasts and errors for a specified
period. The model used has the demand variable repre-
sented by a trend component, seasonal component and
random component combined additivcly. The trend term
is assumed to consist of a single function whose values are
supplied to the procedure in an array f[1 : N] where N is
the number of observed values of the demand variable, also
supplied, in an array y[1 : N]. These values correspond
to consecutive time periods, there being m seasons in a
year, represented by m seasonal constants, but N need not
be a multiple of m. N must satisfy N> m + 2. The
number of observed values for each season must be
supplied in the array n[l : m].

Estimates are left by the procedure as follows: the trend
constant in a[0] and the m seasonal constants in the
remainder of the array a[0 : m). Standard errors for the
constants are in the array e[0 : m). The residual variance
estimate is in w.

Forecasts (or predictions) are made for consecutive time
periods from Pl to P2. These are left in pred[Pl : P2]
and their standard errors in pe[P1 : P2].

It should be noted that if the values of P1 and P2 do not
both lie within the range 1 to N, then the array f will
require new bounds, the lesser of 1 and P1 and the greater
of N and P2, respectively. In any case, values must be
supplied to the whole of the array f before activation;

begin integer i, j, k; real F, YF, p,q; array T, Y[l : m];
YF:=F:=p:=q:=0;

25

for i:=1 step 1 until m do
begin
k:=i; T[i]:=Y[i]:=0;
for j:=1 step 1 until #n[i] do
begin
F:=F+flk] 4 2; T[i]:=T[i1+fTk];
Y[i]:=Y[i]+ylk]; YF:=YF+ylk] xf[k];
k:=k+m
end;
p:=p—TIli142/n[i]; q:=q—T[i]1x Y[i]/n[i]
end;
p:=p+F; q:=q+YF;
estimates:
al0]:=q/p;
for i:=1 step 1 until m do
ali]:=(Y[i]—al0]x T [i])/nli];
sumsquares:
w:=0;
for i:=1 step 1 until m do
begin
k:=i;
for j:=1 step 1 until »n[i] do
begin
wi=w+(y[kl—ali]—a[0] X fTk]) } 2; k:=k+m
end
end;
w:=w/(N—m—1); e[0]:=sqrt(w/p);
for i:=1 step 1 until m do
e[i]:=sqri((1+T[i]14 2/(p X n[iD)/n[i] x w);
predictions:
for k:=P1 step 1 until P2 do
begin
iIi=k—mX((k—1)=m);
if i<O0 then i:=i+m;
pred[k]:=ali]+a[0] X f[k];
pelk]:=wx (1/n[i]+(T[i)/nli1—f1k]) 4 2/p);
pelk]:=sqrt (pe[k])
end
end of season

(Computer Associates document

¥202 IMdy 61 U0 3senb Aq GozyZ/ze/L/ L L/elone/|ulwoo/wod dnosojwepeoe)/:sdiy wolj pepeojumod

