Segmentation and virtual address topology—an essay in

virtual research

By J. G. Laski*

This paper exhibits the hardware logic of a two-dimensional addressing scheme. This scheme
has more elaborate facilities built into the hardware than the paging logic or segmenting logic
of any machine I have seen proposed elsewhere. I do not put this logic forward as a proposal for
yet another machine design; my purpose rather is to describe facilities that it would be possible
to embed in a machine. They thus realise various possible virtual space topologies that could be
provided for the designer of the operating system. Which one he chooses depends on what will
most economically give the facilities he needs. Thus when describing hardware, I suggest some
uses for it and point out conceptual difficulties that it does not resolve. It is not my purpose to
exhibit the logic of the kinds of operating systems that such hardware serves and which, itself,

- imposes what hardware is required. Fragmentary aspects will be found in the papers named in

the bibliography to which the reader is recommended. Further, the necessary design process is to
decide on the operating environment in which the users are to find themselves and then provide
it by proper choice of software and hardware.

(First received May 1967, and in revised form November 1967)

Paging and segmentation

Both paging and segmentation are realised through some
form of indirect access over which the user has no
explicit control. It is essential to appreciate, however,
that, although they are implemented by fundamentally
similar mechanism, conceptually, paging in no way
resembles segmentation. Distinguishing the two con-
cepts has not been helped by the way in which segmenta-
tion has been implemented in some hardware designs;
from the literature describing them it appears that the
two concepts were certainly confused by the hardware
designers and technical writers and apparently by the
software designers.

The purpose of paging is to relieve the programmer of
the need to manage physical store. To the programmer
a paged store is indistinguishable from an unpaged store
of the same address size. Apart from a different per-
formance, in the cost/speed compromise, the programs
he can write and the way they operate are in no way
affected. (He can cheat, of course; knowing page size,
he can organise his program to minimise page turning.)

The purpose of segmentation is to provide the pro-
grammer with an addressing space that is not homo-
genous but corresponds to the logical structure of his
process. He has a number of entirely separate segments,
with respect to each of which he may have an entirely
different capability of access, each of which he may be
sharing with an entirely different group of parallel pro-
cesses, each of which may grow and contract indepen-
dently according to his need, and each of which he must
treat according to its logical type. Thus if a programmer
ignores the segmentation structure of the machine, he
wastes it. Segmentation affects the feasibility of pro-
gramming techniques such as sharing data-objects

(including code) between and within parallel on-going
processes, inter-object access protection between and
within parallel processes, dynamic acquisition and release
of user space, dynamic connecting and snapping of inter-
segment linkages, etc. Some of these facilities can be
provided by software and user discipline, but it is fear-
fully expensive by comparison with having the right
segmentation hardware. Unfortunately no one yet
knows (since user experience is negligible, and simula-
tions of doubtful validity) what is the right segmentation
hardware.

The concept of virtual space

In a sense, virtual space is with the programmer as
soon as he writes in a language other than absolute
binary, for he can then write code which will be inter-
preted to fetch words from locations with names different
from those he uses. However, the concept is not very
useful when the bind time of this address translation
occurs before the actual execution of the code (fetches
from store), e.g. at compile time or at load time.

When, however, with base and limit registers or seg-
ment pointers, this interpretation occurs at run time, a
new and useful possibility arises. Rather than a Von
Neumann machine where the bits in any addressable
location are interpretable as any type of data, dependent
on the context in which it is fetched, the type of the
data can be associated with the location, as named in
the code from which the fetch is issued. Consequently
these addresses may be structured more elaborately than
the 2" contiguous locations with identical properties of
the Von Neumann machine, and it is useful to speak of
the virtual address space and its topology within which
the program operates.
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Given a single base and limit register, address space
is m contiguous identical locations (where m can be
chosen by the programmer) and fetch of a word outside
the program area is illegal. This allows several programs
of arbitrary length to coexist safely in core.

With two base and limit registers, there can be two
types of address—two segments—one, say, to contain
code and therefore properly allowing only instruction
fetch or the operand of jump instructions (I—fetch), the
other to contain data and therefore properly allowing
only operand fetch or write (0—fetch). This 2 X w
topology (two segments, each of indefinitely many
words) is the least complex that allows store to be shared
between several processes; for the I—segments of two
processes may be interpreted to the same physical store
locations, while the O—segments address distinct areas
of store (or conversely).

The conceptual importance of virtual space comes
from more elaborate use of the two possibilities intro-
duced above.

1. Subdividing user-space into distinct areas with
distinct properties.

2. Using the same physical space as distinct user-
space by one or many users.

There are two further economic advantages which
come not from segmentation but from paging which
was an earlier form of virtual space developed by the
Atlas team.

3. Relocation of virtual store in physical store as it is
paged in and out without requiring addressing
change in the object code.

4. Scattered and partial loading of code according to
current use (one level store).

It is vital to keep clear in one’s mind these two kinds of
uses of indirect store access methods. The conceptual
possibilities and interest for this paper come from (1)
and (2). (3) and (4) are of engineering importance in
computer architecture; they may or may not be desirable
in possible environments of a non-segmented machine.
It is possible to have a segmented machine without
paging, though I doubt very much whether there are any
segmented environments in which paged architecture is
not worthwhile.

Conversely, given a paged machine one can write
code for it as though it were segmented, as indeed one
can even on a machine with direct addressing. A great
deal of confusion seems to arise from having observed
such practice on, say Atlas, and not then following
through the distinction.

It is far from clear, to my understanding at least, what
topology of address space can best be made use of by
operating system and can provide worthwhile facilities
for the object programmer.

Without segmentation hardware to map bit-patterns
that specify addresses in the virtual space topology
dynamically to bit-patterns that access physical store, I do
not understand how any operating-system can effectively
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permit the opportunities which come from sharing user-
provided data objects (including code) between parallel
processes and independent users, or can give store
protection within and between processes by the type of
access required, or allow controlled dynamic expansion
and contraction of space used by the programs. These
concepts are both deep and subtle. As they begin to
be understood they will affect fundamentally our feeling
for the use we can make of computing facilities and thus
the design of our programming languages. In particular
I am certain that the notion of a community data-base
and a computer grid will remain hot-air until these con-
cepts have been fully explored. I am sure that as we
do so other concepts equally important will emerge
from the fog.

I am now going to present the implementation tools
for an w X w or so-called two-dimensional addressing
space. I am hanging on many more bells and whistles
than any system I have seen implemented or proposed
elsewhere in order that the conceptual implications of
the various possibilities can be brought out.

It is possible to devise address spaces with more ela-
borate topologies. In particular an address space that
is tree-structured has been proposed elsewhere; it has a
number of conceptual attractions, that w by w systems
lack. There are difficulties, as I see it, in handling shared
data-objects so as to ensure their integrity when several
processes are messing around with them, and in speci-
fying inter-segment references. I can just about see
solutions to these problems for the w X w case; I only
wish I could for a tree-structured virtual space of objects.

An important area that I am also going to exclude
from discussion is that of the efficient development of
physical address from virtual address.

If addressed data is not in primary store, I assume a
mechanism to suspend the process that wants it in real
time and use its processor on some other process. There
will be a page-management scheme which will have a
crafty and rapid way of choosing which virtual page to
move to secondary store; address preparation and
instruction execution will be overlapped by ingenious
and reliable hardware; associative slave stores will be
scattered through the processor wherever they will do
the most good. We can all argue—and will all argue—
about how best to do it, but the problems are techno-
logical, not intrinsic.

Pages

A page is a contiguously addressed region of physical
addresses either in core or in secondary storage. A
page table consists of a list of page descriptions (PDR)
for contiguous virtual addresses, within a segment. A
PDR contains three fields:

PPS: Addresses of page in primary store or ‘not in
primary store’ code.

PSS: Address of page in secondary store.

PUB: Page use bits. Information left behind in the

course of store accessing as data for the store
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management routines of the supervisor. The
following may be useful, but what is actually
provided is a technological problem:

EB: Does the page exist?

LB: Lock bit forbidding removal of the page.

WB: Whether the page has been written to.

UC: Use Count: how many times the page was used.

Segments

A segment is a region of virtual addresses contiguously
addressed by any process that has access to it. It is the
unit of information in which sharing between processes
takes place. A segment may have properties that limit
the access of all processes connected to it. These are
maintained by segment control bits (SCB). What the
type of data is—how the bits are interpreted in the
segment, as seen by all processes connected to it—is
maintained by segment type bits (STB). Limitations on
access and type for each process that may be connected
to it are maintained by the operating system, and thus
for every connected process there may be its individual
access control bits (ACB) and access type bits (ATB) on
the access path to maintain such limitations and perhaps
others voluntarily accepted.

A segment connected to one or more active processes
will have a segment descriptor locked in primary storage
or available in a paged list whose page-table is locked
in primary store. The table in which it is found will
either be a process segment table, in which case it is
said to be owned by that process, or may be a system
table in which case it is said to be a public segment.
There is some case for making all segments public.
However, access entails an additional indirection cycle.
Therefore, segments local to a process are economically
held in the segment table private to the process. A
further use of this argument suggests that segments
mostly accessed from some process should be held in
that processes’s segment-table. Also, I feel unhappy
about a single public segment-table which would grow
uncontrollable. It may be that here is where tree-
structure addressing (thinking of the process segment-
table itself as in this tree) is important in order to
understand the notion that some segments are ‘in the
neighbourhood’ of a given segment and thus more easily
accessed.

Note that, for a segment whose segment-description
is in the segment-table of that process (without
indirection) ATB = STB, ACB = SCB. Otherwise
rules for compounding the ATB and STB information
and the ACB and SCB information are required.

Direct segment-descriptors must also hold the address-
ing limit for the segment, SLM and the segment-page-
length, SPL. These may be changed by the segment
supervisor and are not accessible to user programs. A
user program may request a change in SLM and, by
providing data, may advise the segment supervisor on
how to manage core. Finally, if the segment is unpaged,
control bits similar to PUB must be provided. The
SCB of course, includes a count of how many processes
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are using the segment, etc. to help in store control for
the segment page table.

Indirect segment-descriptors contain ACB and ATB
for the access route to the segment from the process in
whose segment-table they appear. They may point to
direct segment-descriptors or to further indirect segment
descriptors. More important to the logic of the operating
system is the way that the address bits of the indirection
are construed. Leaving aside the possibility of using
index registers as well as the direct bits of the various
fields, the following possibilities apply:

(1) One field construed as physical address in primary
store.

(2) One field construed as offset in the same table as
that in which the indirect segment description
appears.

(3) Two fields, one of which gives the base of the
table, the other giving the offset in the table.

The interesting problem, if many segment tables are
in use, is how this first field determines the table base.
If it is absolute physical address, effectively the facility
is no more than that given by (1). If all segments are
defined in a single public table, the first field of (3) is
implicit. If processes, i.e. segment tables, are numbered
by having their segment table base addresses in a system
table, the process segment, the first field can access the
required segment-table base by its process number.
However, 1 feel there should be some more tree-like
way of pointing to a segment-table in the lineage of the
table in which the indirect segment-descriptor appears,
and perhaps having an additional field to access a seg-
ment-table not on the direct lineage. This is an area
where further research is badly needed.

ACB and SCB, ATB and STB

Precisely what facilities are provided in hardware and
what use is made of them in the operating system is one
of the key design decisions in a segmentation scheme.
The features I describe here are possibilities whose
economy or necessity will have to be established in any
proposed architecture to achieve specific operating
capacilities.

Access-control presents clearer issues than type-
determination. It will be noticed that I have not
proposed two segment-descriptors pointing to the same
segment, as have been implemented on some machines.
This is to ensure that no access route can skip around
the SCB limitations. However, it may be that the
operating system may, temporarily, give private access
to a particular process if all other processes are to be
blocked. The following fields, then, can usefully appear
in ACB and SCB; they are compounded by or-ing along
the access route.

NW: Any process attempting a write command and
encountering this bit is suspended.

NR: Any process attempting an operand fetch (except
in a jump command) and encountering this bit
is suspended.
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NI: Any process attempting an instruction fetch, or
operand fetch for a jump command, is suspended.
Any I-fetch suspends the process unless, either
the preceding I-fetch for this process was from
the same segment, or this fetch is to a standard
(first ?) word of the segment.

If this field matches a field describing a super-
visor-authority-status for a process, the restric-
tions above are ignored.

EO:

SA:

Access control for individual processes can alter-
natively be managed by loading process-held information
into the processor which must match segment-held
information for access to be permitted; I suspect this
method to be less flexible but it may involve less hard-
ware.

The use best made of STB and ATB to determine the
interpretation of instruction codes and the applicability
of instruction codes is less clear. It seems to me desirable
to be able to vary the field-width of addressing and
operand fetch. Whether a segment should be required
to contain data of a single type, e.g. all 8-bit characters,
or all 144-bit unnormalised floating point numbers with
22-bit exponent, or a particular record structure as
specified by some description found elsewhere . . . is
far from clear to me. The rules for compounding STB
and ATB are again, still unclear.

Address interpretation

It remains to discuss how the addresses in object code
are construed by the address-development logic to
determine from where in store bit-patterns will be
fetched. Firstly, it must be clearly realised that it must
be possible to access outside the segments addressed
directly or indirectly by segment-descriptors, but it must
only be possible to do so by supervisor service. Hence
addresses outside the segments in use by a process may
be represented in a format quite different from running
addresses. Thus loading, or to use a better term, con-
necting-segments to a running process, can be hedged in
with all kinds of caution to be sure that rules of privacy,
etc. are not being violated. These addresses can be
specified by character strings for table look-up through
a data-structure of dictionaries or a tree of tables or
other imaginative complexities.

The essential requirement is that, however slow this
first connection procedure may be (to allow the needed
elaboration of reference among the retained objects that
form the common database for all users of the system)
subsequent in-line access through the segment-descriptor
so introduced into the segment-table must be fast and
straightforward for the process needing the connection.

The connection process described here supposes that
intersegment references use two separate addresses, in
separate virtual space. The first is a permanent data-
base which is interpreted by software and then replaced
with a local address (i.e. one that is valid for the duration
of this process only and within this process only) that
is hardware interpreted with speed and accuracy. I
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am unhappy about this distinction, particularly since in
the on-line future many processes will be permanently
active rather than transient as are those processes of
today’s batch environment which presently incite our
imagination.  Virtual addressing space here is an
informing principle of what I believe to be a central
research area on the hardware/software borderline.

However, we are principally concerned with inter-
preting the local address that is set as a result of con-
necting the global data-objects.

This involves three stages:

(1) Given address —> own segment-descriptor
(2a) Indirect segment- — own segment-descriptor

descriptor

(2b) Indirect segment- — another segment-descriptor
descriptor

(3) Direct segment- — (page table of) physical
descriptor segment.

Actual accesses are of the form:
1 <2a|2b>703.

i.e. first we interpret the bits we are given as a segment
descriptor, then segment-descriptor indirection can take
place a non-negative number of times (usually 0), and
finally we reach the actual data bits. Since the possible
indirection is the phase where what is required is least
clear, I leave it till last. Let me again emphasise that I
am concerned here with what it might be possible and
useful to provide to implement some specific desired
operating environment, rather than what it is desirable
and necessary to provide for relatively straightforward
environments. Associative and slave stores and over-
lapping of address preparation with instruction execu-
tions are technical features in hardware implementation
of such a scheme that determine what it is economic to
include.

Given address — own segment-descriptor

A processor knows which process it is treating by
knowing the base of the segment-table of that process.
This process-base register may also determine the way
in which virtual addresses are chopped up into fields if
this is to vary from process to process. This possibility
could allow the coexistence of processes, one of few
large segments, the other of many small segments within
the same total word length for addresses. (The use of
modifiers (possibly for indirection) may make this
unnecessary.)

SN
ST, (SN, sMm/)’

LN
LT,( LN, LM
LN, LMA, LMB
A given address has four fields. The interpretation of

the second depends on the value of the first, of the fourth
on the third.

ST: Segment Tag: =0— No segment modifier.
= 1 — Segment modifier present.
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SN: Segment Number: Offset of segment descriptor
in process segment-table.
This may be full width if
ST =0 or part width and

modified by SM.

SM: Segment Modifier
Number.

LT: Line Tag: Addressing structure of line
part of address e.g. whether
direct or indirect, indirec-
tion and modifier sequence.

How many modifiers etc.
LN: Line Number.

LM: Line Modifiers: Used in accord with LT

given information.

Direct segment descriptor — physical address
D, SCB, STB, SUB, SPS, SSS, SLM.
D: = 0— Direct Segment Descriptor.
SCB: Segment Control Bits.

STB: Segment Type Bits: These can determine
the field width of
line addressing in the
given address and
the page size of the
segment (including
whether paged) and
whether in primary
store.

SUB: Segment Use Bits: Information for ac-
counting and the

supervisor.

Base address of
(page table of) seg-
ment in primary
store.

SPS: Segment Primary Store:

SSS: Segment on Secondary
Store: Base address of seg-
ment on secondary

store.

Indirect segment descriptor — segment descriptor

The address space for this indirection is the least
clearly understood. The system I describe will cope
with a fairly general scheme in which indirection can
be either through a segment descriptor in the same seg-
ment table (i.e. in the same process) or in another table
whose base is pointed to by a special system table—the
process table—whose base is known to the system and
whose page table is welded to core. Certain processes
may be dummy in the sense that their only purpose is to
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provide a segment table whose contents are used in-
directly by other processes without ever having a process
applied to them. If all accesses are indirectly through a
pseudo-segment table of this kind, we have a two-level
form of the all-public segment scheme discussed earlier.
The elaboration to tree-level, and access to a segment
table of this process, is outside the scope of the facilities
presented here. Again, what can be provided, and how
it can be used seems to be a fruitful and interesting area
of research.

SON

D, L, ACB, ATB, (s ON. STN

), SNM

D: Direct Bit: = 1 — Indirect segment descriptor.

L: Local Bit: = 0 — Access from this segment
table (STN = self).
= 1 — Implies access from another
segment table.

ACB:
ATB:
SON::

Access Control Bits.
Access Type Bits.

Segment Offset Number: Offset in segment-
table.

STN: Segment Table Number: Offset of pointer to
segment table in
system table of
segment table

(process table).

SNM: Segment Number

Modifier: Modifies SON.

It will be clearly seen that further elaboration of modi-
fication and indirection in interpreting indirect segment
descriptors would be possible. I suspect that it would
not be very useful.

I have given above a range of hardware features that
it would be possible to supply. To describe how they
might be used, and therefore to determine which features
should appear requires, of course, writing a supervisor
that uses them and then simulating the logic of its
behaviour. This is outside the scope of my purpose
here, but should be done, at least in imagination, by the
reader to discover precisely what facilities in what
operating environments impose what hardware organisa-
tion to make them economic or even feasible to provide
for the users.
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