A permutation procedure for job-shop scheduling

By T. A. J. Nicholson and R. D. Pullen*

A new method is proposed for scheduling jobs through a factory. The jobs consist of a sequence

of operations, each operation requiring a number of resources of different types.

The objective

is to plan the start times of the operations so as to minimise the cost of jobs being late, subject
to the sequence constraints being satisfied and the demand for resources not exceeding the supply.
The problem is formulated in terms of optimising a permutation, and conditions for a locally
optimal permutation are defined. A procedure is described for obtaining such locally optimal
permutations and subsequent results show significant improvements over heuristic techniques such
as the shortest operation and least slack rules.

(First received July 1967)

1. Introduction

Scheduling methods are concerned with progressing the
forward work load in a factory so as to complete the
jobs by their due dates and use the resources as efficiently
as possible. Usually the jobs consist of a sequence of
operations which have to be performed in turn, and the
problem is to determine the start times of the operations
so as to achieve the chosen objective. The difficulties
arise because of the queues of operations which build up
on particular resources, and a scheduling method is a
means of controlling these queues by deciding which
operations should be delayed. In small workshops it
may be possible to schedule efficiently without any
formal schemes, but in larger concerns the volume and
variety of the workload generally means that it is
essential to use systematic methods for the control to be
effective. The implementation of a scheduling system
will often be supported by a computer program.

Past research on scheduling problems falls into two
categories, and these have been well reviewed (Sisson,
1962; Mellor, 1966). Firstly, there are methods for
finding optimum solutions to very simple problems.
The three-machine scheduling problem is the classic
case. The problems have had to be simplified to keep
the formulation mathematically tractable and to apply
an optimisation method. The methods include integer-
linear programming (Bowman, 1959; Manne, 1960;
Wagner, 1959), and branch and bound techniques
(Ignall et al., 1965). The weakness of these methods is
that they cannot be applied to problems of more than a
very few variables, nor do they appear to suggest suitable
lines of advance for practical situations.

Secondly, there is a group of heuristic studies which
have aimed at finding rules for scheduling efficiently in
special practical situations (Bulkin et al., 1966; Gere,
1966; Conway and Maxwell, 1961; Rowe, 1960). The
criteria are usually chosen intuitively. Although these
methods are usually computationally quick, they provide
no indication of how close to the optimum the answers
lie, and they tend to be very special purpose.

This paper describes a scheduling method which tries

* Mathematics Branch, A.E.R.E., Harwell, Didcot, Berkshire.

48

to preserve the best features of both categories. A
realistic factory model is formulated and a formal
optimisation method is devised for the associated
scheduling problem. The factory model is based on the
central features experienced in many practical work-
shops, and the objective commonly occurs in practice.

2. The factory model and notation

The model has the following structure of jobs,
operations, and resourcss.

(1) The jobs

There is a known forward load of work consisting of
a number of separate jobs which require processing on
the available resources. Each job has a given arrival
time in the factory and a due time by which the job must
be completed, to avoid incurring penalty costs. Jobs
are also given a value and a priority relative to other
jobs. The cost of a job being late depends on the value
of the job, its priority, and the extent to which it is late.

(i) The operations

Each job consists of a number of separate operations
which must be performed in a specified sequence. The
sequence may vary with different jobs. The durations
of all the operations are known in advance, and are
independent of one another. Each operation requires
a constant number of resources from a specified variety
of resource types while it is being processed. Once an
operation has been started it cannot be interrupted by
any other operation.

(iii) The resources

The resources are classified into homogeneous types,
and the supply levels of the various types are known and
may vary over time.

(iv) The objective

The objective is to plan the start times of the operations
so as to minimise the cost attributable to jobs exceeding
their due dates.

Some common practical features of workshops such
as transit and set-up times or limitations on in-process

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

Job-shop scheduling

stocks are not explicitly included in the model, but it is
often possible to reinterpret these aspects within the
above framework.

The following notation is used in the formulation of
the problem:

N is the number of jobs
M is the number of resource types
A(j) is the arrival time of job j
T(j) is the due time of job j
v(j) is the value of job j
u(j) is the priority of job j
n(j) is the number of operations of job j
d(j, k) is the duration of the kth operation of job j
r(j, k, m)is the number of resources of type m
required by operation k of job j at every
time interval in which the operation is
being performed
s(l, m) is the supply of resource type m at time /
x(j, k) is the scheduled start time of the kth
operation of job j.

All quantities are assumed to be positive integers or zero.

3. The formal optimisation problem

The problem variables are the start times x(j, k) of
the individual operations. We will denote by the vector
{X} an assignment of values to the problem variables.
All other quantities are given data for the particular
problem.

The objective function is defined in terms of the cost
of jobs being late. A job is late if it is completed after
its due time, and we assume that the cost steadily
increases the later the job is completed. We therefore
define by g(}, #(j)) the cost of job j being completed at
time #(j), and the function g will have the properties:

g, 1(j)) =0 for u(j)< T(j) @
%
and N0) > 0. @)

Also the cost may depend on the value and priority of
the job, and in particular we will study the objective
function for which the cost is the product of the job’s
value and its lateness taken to the power of its priority.
Therefore

g(1(7) = v(j). Max (x(j, n(j))
+d(j, n(j)) — T(j), 0)“P. (3)

The objective function then becomes:

FX} = 360,30 0) + dGn). @)

The constraints on the values of x(j, k) are expressed
as follows. Firstly, a job cannot start before it arrives
in the factory. Therefore we require

x(J, 1) = A()). ©)

49

Secondly, the operations must be processed in the correct
sequence, i.e.

x(j, k) = x(j, k — 1) + d(j, k — 1) for k = 2, n(j). (6)

Thirdly the demand for resources must not exceed the
supply at any time. Therefore

N n(j)
X X 80k, 1).r(j, k, m) < s(l, m)
j=1 k=1

forall/and 1< m< M (7)
where

8(j, k, 1) =1 for x(j, k) <1 <x(j,k) + d(j, k)
= 0 otherwise. ®8)

Therefore the optimisation problem is to determine
the values x(j, k) so as to minimise the objective function
(4) subject to the constraints (5), (6) and (7).

It is not possible to apply standard optimisation
methods to this scheduling problem. A total search of
the feasible schedules would be a massive undertaking
(Giffler et al., 1960; Heller et al., 1960). Branch and
bound methods would be equally impractical (Ignall
et al., 1965). Also, although in certain circumstances
the problem could be translated into the framework of
integer-linear programming the computational task
would still be impossibly large.

In the following sections we propose a new technique
for tackling this problem, which is an extension of a
method which has been used successfully on a number
of smaller problems of a similar type (Nicholson, 1967).
The basic scheme is to convert the optimisation problem
into a permutation problem in which a number of items
have to be arranged in a sequence of positions. A
definite level of optimality is set for the permutation
solution and a method is described for constructing such
a permutation.

4. The scheduling problem as a permutation problem

The scheduling problem is translated into a permuta-
tion problem in the following way. First, the total set
of operations is arranged as an order list. Let the
number pair (j(i), k(i)) denote the operation in position
i of the list, being the k(i)th operation of job j(i). Then
the total set of operations can be represented by a
permutation [P] where

[P] = [GD), k1)), (J(2), k(2)), (G(T), k(T)] (9
where T = ‘g n(j).

Secondly we need a means of transforming the
permutation [P] into a set of operation start times

x(j(@), k(i)). We therefore construct the following
transformation. Determine x(j(i), k(i)) for i=1to T
in that order as

x(j (i), k@) = Z(j(@), k(i) (10)
where Z(j(i), k(i)) is the smallest integer which satisfies

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

Job-shop scheduling

the following inequalities:
Z(j(k), 1) = A(j(D) 1mn
Z(j @), k@) = X(j(), kG) — 1) + d(j@), k@) — 1)

| for k() =2,n(iG) (12)
L§=]13(]'(L), k(L),1).r(j(L), k(L), m)
< s(/, m) for all m, (13)

for x(j(i), k(1) < I < x(j @), k(@) + d(j(@), k(D))

The transformation represented by (10), (11), (12) and
(13) may be denoted by « so that the relationship may
be written concisely as

- {X} = «[P] (14)

where {X} denotes the vector of values x(j(i), k(i)) for
i=1T1).

In order that this transformation will provide a
feasible schedule we need to impose a feasibility con-
dition on the permutation. A feasible permutation is
defined as any permutation [P] such that / > i,

k@) <k(@) if j@) =jd). 15)

It should be noted that this is the only constraint on the
permutation. All the other conditions for feasibility
have been automatically built into the transformation «.

It remains to show that the optimum to the original
optimisation problem is equivalent to the optimum of
the corresponding permutation problem with the given
transformation «. The proof of this equivalence is
established in an Appendix.

5. Neighbouring exchange optimal permutations

Formally there exists one or more optimal schedules
amongst the 7! possible permutations. But as in
practice T may be of the order of 10? or 103, it is
impossible to conduct a total evaluation of all possi-
bilities. We will therefore define characteristics of
permutations which are locally optimal, and in particular
we will define permutations which are optimal with
respect to the exchange of any two neighbouring
operations.

Firstly we define the neighbours of an operation in a
permutation. Any operation in the permutation has
two neighbours a predecessor and a successor neighbour.
Given any operation (j(i), k(i;)), in position i;, the
operation (j(i,), k(i) is a predecessor neighbour if it is
the operation nearest in the permutation which uses
some of the same resources as operation (j(i))k(iy)).
Therefore (j(i,), k(i;)) is a predecessor neighbour of

(G, kGy) if i, < iy,

mglr(j(il), k(@iy), m).r(j(iy), k(iy), m) > 0 (16)

and E A6, K m) GO, KDm =0 (1)

for i, <I<i.

50

Similarly we define the operation (j(i,), k(i,)) as a
successor neighbour if, i, > i;, condition (16) holds, and
condition (17) holds for i} <! < i,.

We can now define the neighbouring exchange of an
operation. Let (j(i), k(i)) be any operation and let
(j(1), k(1)) be a neighbour of operation (j(i), k(i)). Then
we define a neighbouring exchange of operation (j(i),k(i))
by exchanging the permutation [P] into the permutation
[P(@i, I)] where

[PG, D] = [(GD), k1)), (j(), k(2)), - . .,
(=1, k(= 1)), (D), k@), GO, kD)), - - -,
(GG — 1), kG — 1), (GG + 1, kG + 1)), . .,

(D), k(T))] if I<i (18)
or

[PG, D] = [(GD), k(1)), (G (D), k(2), - - -
GGE— 1, kG — 1), GG+ 1D, kG + 1)), ..,
GO, kD), GG, k@), GA+ D, k(I +1)) . . .,
(J(T), k(T))] if I>i. (19)

It should be noted that the permutation [P(i)] is
feasible only if

J(L) #jG) for L =1 if l<i} 20
for L=1il, if I>i

Therefore we define the exchange [P] to [P(i, [)] to be
feasible if condition (20) holds.

Finally we define a permutation which is optimal with
respect to neighbouring exchanges. The permutation
[P] is optimal with respect to all neighbouring exchanges
if for any operation in position i and either of its neigh-
bours in position / the condition

F[P] < F[P(, D] €2))

holds for all i and /, the permutation [P(i,I)] being
feasible, and F[P] being the objective function value
associated with the permutation [P].

In the following sections we describe a method for
constructing permutations to satisfy condition (21).
Section 8 describes the construction of an initial per-
mutation and Section 9 describes how to modify this
permutation to the required level of optimality. Section
10 describes a fast method for modifying the initial
permutation so that the final permutation ‘nearly’
satisfies condition (21).

6. The construction of an initial permutation

We now describe how to construct an initial feasible
permutation. Clearly any feasible permutation would
suffice as an initial permutation, as it could subsequently
be modified until it was optimal with respect to neigh-
bouring exchanges. But it is important to aim for an
initial permutation which is as near optimal as possible
so that the number of subsequent exchanges is as small

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

Job-shop scheduling

as possible. Equally, the calculation of the initial
permutation should not be too expensive in computing
time. We therefore propose the following procedure.
The permutation is built up one operation at a time, the
tth operation to be selected being placed in position .
We restrict the choice of operations which can be
selected at the ¢th iteration so as to ensure feasibility and
reduce computation. Also we estimate statistically the
increase in the objective function value which will result
from the selection of an operation, and choose that
operation for which the estimated increase in the objec-
tive function value is a minimum.

This procedure may be formalised as follows. Let J,
denote the set of operations available for selection for
the tth position in the permutation. Also let £,(j, k, t)
denote the estimated increase in the objective function
value which would result from selecting operation (j, k)
for position t. Then if (j, k,) denotes the selected
operation, (j,, k) is determined for =1 to T by the

equation:
S ks) = Min fi(j, k, 1) (22
U, keds

The set of operations J, consists of a restricted group
of the next operations of all jobs which are not com-
pleted. An operation is included in J, only if its earliest
possible start time is not greater than the latest finish
time of the operations which have already been scheduled.
Furthermore the operation selected by equation (22) is
scheduled only on condition that no other operation in
the J, set can be completed before the selected operation
will be started. If this is possible then the J, set is
revised to include only those operations which can be
completed before the selected operation could start. In
this way the J, set is determined in an iterative manner.
This scheme for determining J, with relatively few
operations which can be started in the neighbourhood
of the scheduled operations is aimed at reducing com-
putation and encouraging high resource utilisation.

It remains to determine a suitable expression for
£, k,). The function f,(j, k, t) measures the increase
in the value of the objective function which would result
from selecting operation (j, k) for position ¢. Clearly
this increase can only be estimated, as the permutation
is incomplete, and we will derive a convenient formula
for this estimate.

Firstly it is necessary to estimate the completion time
of job j after t — 1 operations have been scheduled.
Denote this estimate by T,_,(j), and let n,_,(j) and
Z(j, n,_1(j)) be the number of the next operation of job
Jj and the earliest time at which it could be started. The
value of T,_,(j) is based on the earliest possible start
time of the next operation of job j, together with the
processing time of the remaining operations and the
delays which these operations expect to experience. Let
. denote the expected delay on an operation after #
operations have been scheduled. Then T,_,(j) may be
estimated as (

n(j)
T,—1(j) = Z(j,n—1())) + z)(#,er(j,k)) (23)

=n_1(j

51

where p, is calculated adaptively as:

t—1 1
e = _t_”/"t~l + 7 (x(jn n—1(j)) — x(jpn—1(j) —1)

— d(jo n—(G) —1)))- (24)

We can now estimate the increase in the objective
function value which would result from selecting
operation (j, k) at selection ¢. The significance of
selecting operation (j, k) is that it may delay the progress
of other jobs. We can estimate the rate of increase
in the value of the objective function if job i is
delayed beyond its currently estimated completion time

T,_ (i) as [ﬁ—_l where the function g is
bt(J)J‘t(i) =T14()

defined by expression (3). Since the jobs which are
likely to be delayed directly by selecting the next opera-
tion of job j will all have their next operations included
in the J, set, the total rate increase in the value of the
objective function due to selecting operation (j, n,_1(j))
is estimated as

og
G ..,f,";'i) s I:bt @):l €0) = Tea®) @3)
i#j
We will use this rate of increase as a measure of the
increase in the value of the objective function.

This formula for f(j,n,_(j),?) may be simplified.
The operation on f,(j,k,¢) in equation (22) is a
minimisation, and a minimisation is unaffected by sub-
tracting a constant from all members of the set to be

is a constant

dg]
_ (i,n,_lz(i))eh [?’(J') 1) = TG
independent of (j, n,_,(i)), it can be subtracted from
expression (25) to obtain the estimate of f(j,n,—(j), t)
as

minimised. Since

og

Sl n—1(j), 1) = — [m (26)

1(1') =T

For the particular objective function of expression (3)
and (4) we will obtain the value of f,(j, n,_(j), ?) as

Sy m—1()), ©) = — v(j)u(j) max (T;—1(j)
— T(j), 0y~ 1. @7

If all the operations in the set J, are such that
T,_(j) < T(j), then the function f,(j, n,_ (j), t) will be
zero, and the selection procedure of (22) will be in-
determinate. This corresponds to a factory situation in
which there is more than adequate time to complete the
jobs by their due times and it does not matter which
operation is selected next. When this situation arises,
the convention will be adopted of choosing the next
operation as the operation which is nearest to becoming
late, i.e. the operation for which (7(j) — T,—())) is a
minimum. This completes the definition of the function
S, k, o).

When all the operations have been included in the
permutation, the initial permutation is complete.

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

Job-shop scheduling

7. Obtaining a locally optimal permutation

We now need to modify the initial permutation so as
to obtain a permutation which is optimal with respect
to neighbouring exchanges as defined in Section 6. To
do this we make a series of neighbouring exchanges at
each iteration reducing the value of the objective
function.

We determine the sequence of exchanges as follows.
We select the job which currently contributes most to
the objective function and which has not been selected
since the last iteration on which the objective function
was reduced. If at the tth iteration this job is denoted
by j, and the set of job numbers which have been
selected since the last iteration on which the objective
function was reduced is U,..;, then j, is determined by
the equation

g(jta Tl—l(jt)) :1 maxN g(/a Tt- 1(.]))

JUi1

(28)

where T,_,(j) is the completion time of job j with the
current permutation.

We now make a series of neighbouring exchanges with
the operations of job j, starting with the last operation
and proceeding to the first operation and repeating the
cycle until a full cycle has been made with no improve-
ment in the objective function. If this occurs on the
first cycle then the set U, contains the elements of U,_,
and the number j,. Otherwise the set U, contains only
the job number j,.

When the set U, contains all the job numbers j = 1
to N then a permutation has been obtained which is
optimal with respect to neighbouring exchanges.

8. Nearly optimal permutations

The procedure described in the previous section for
modifying the initial permutation to obtain a neigh-
bouring-optimal permutation may be too costly in
computing time. In this case we can significantly reduce
the amount of computation by considering a job only
once for trial exchanges of its operations. The pro-
cedure is identical to that described in Section 7 except
that the set U, is always set to the elements of U,_; and
the job number j,. This will mean that we lose any
guarantee that an optimal permutation will be obtained,
but as the results will show, good answers may be
obtained which may be satisfactory for practical purposes.

9. Results

The permutation method was programmed in FORTRAN
for the IBM 7030 computer, and it was tested against
some well known scheduling rules which have been used
for machine loading problems and resource allocation
associated with critical path planning procedures. The
rules are:

(i) First-come-first-served.
(i1) The shortest operation discipline.

52

(iii) The least slack rule. The slack associated with
any operation is determined dynamically as the
difference between the latest time at which the
operation may be started, to avoid the job being
late, and the earliest time in view of the operations
already scheduled. The operation with the least
slack is chosen.

The least slack per operation. In this case the
operation slack is divided by the number of
remaining operations of that job.

(v) Random selection.

All these methods provide a rule for choosing which
operation to schedule next when a queue of jobs is
waiting for resources. The queues are determined by
simulating the scheduling process over time.

The data for the test cases was generated statistically
according to the following scheme:

N, the number of jobs varied between 19 and 32.
M, the number of resource types was 10.
A(j), the jobs arrived randomly in the interval (0, 60),
the average inter-arrival time being 2- 5.
7(j), the job due time was determined as:

n(j)
T(j) = A() + (1 + D) X, d(j, b),

where D was uniformly distributed in the interval (0-2,
1-2).

v(j) the value of job j was uniformly distributed in
the interval (1, V) where V is as shown in the
tables of results.

u(j) the priority of job j was uniformly distributed
in the interval (U,, U,) as shown in the tables
of results.

n(j) the number of operations of a job was uni-
formly distributed in the range (3, 10).

d(j, k) the operation duration is negative exponen-
tially distributed with mean value 3.

r(j, k, m) the operation resource requirements: the
number of resource types required by an
operation is uniformly distributed in the
range (1, R,), the type numbers being different
random integers in the range (1, m). The
number of units of each type of resource
required by an operation is uniformly dis-
tributed in the range (1, R,). R, and R, are
as shown in the tables.

s(l, m) the supply level of resources was assumed to
be constant over time and equal for all
resources. The level S is as shown in the
tables.

Tables 1, 2, 3 and 4 show the results of 5 cases in
each of four different scheduling situations in which the
operations have varying kinds of demands for resources.
These tables show the objective function values obtained
for the initial permutation, the nearly optimal (see
Section 8) and the neighbouring optimal permutation.
The objective function values of the schedules obtained
by the other scheduling rules are also shown. The
values are scaled as shown.

@iv)

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

Data parameters: V =5, U, =2, U, =3, R, =1,R,=1,5S=1

Job-shop scheduling

Table 1

Objective function values x 10~*

CASE INITIAL NEARLY NEIGHBOURING FIRST COME SHORTEST LEAST LEAST SLACK RANDOM
(k) PERMUTATION OPTIMAL OPTIMAL FIRST SERVED OPERATION SLACK PER OPERATION

12 44 1 0 538 35 36 13 1462

23 4 1 1 406 300 372 314 1055

303 9 1 1 119 29 93 141 1030

4(2) 14 3 3 1012 386 262 45 1770

503) 68 | 37 31 228 227 106 129 1022
Table 2

Data parameters: V =5, U; =2, U, =3, Ry =1,R, =3,§=3

13 1 1 1 5 108 85 85 53

212 1 1 1 392 79 133 44 64

312 0 0 0 81 25 25 24 91

4(3) 22 5 5 36 8 10 10 137

503) 9 4 3 82 705 316 84 399
Table 3

Data parameters: V =5, U, =2, U, =3, R, =3,R,=1,§=3

1 4) 11 8 7 131 66 51 62 252

2(2) 26 19 8 37 70 10 5 392

3(0) 0 0 0 4 6 1 2 29

4(2) 0 0 0 591 30 37 202 445

5(0) 0 0 0 513 53 133 53 1493
Table 4

Data parameters: V =5, U, =2, U,=3,R, =3,R,=3,5=4

1(3) 105 5 5 4377 183 488 345 6009

24 10 6 6 149 102 13 21 215

303 33 8 8 79 7 69 100 31

4 4) 97 83 73 725 301 440 375 1694

5(5) 23 20 17 140 91 85 61 129

53

20 Iudy 0z U0 1sonB AQ ZGEYZH/8Y/L /L L/oIoIE/Ulwod/ W00 dno-olwapese)/:sdpy WoI) POPEOJUMOQ

Job-shop scheduling
Table S
Average job lateness
Data parameters: V¥ =1, U; =1, U,=1,R, =3, R, = 3,5 =4

CASE INITIAL NEARLY NEIGHBOURING FIRST COME SHORTEST LEAST LEAST SLACK RANDOM
PERMUTATION OPTIMAL OPTIMAL FIRST SERVED OPERATION SLACK PER OPERATION
1 8-7 3-0 3-0 10-0 7-0 8-1 8-6 22-4
2 9-2 4-4 4-5 14-1 9-2 9-1 10-5 16-1
3 13-6 3-9 3-4 21-8 11-8 13-4 11-2 39-2
4 24-2 9-4 9-4 39-8 27-0 29-5 32-0 40-2
5 5-1 0 0 6:6 4-4 5:6 6-4 8-5
Table 6
Maximum job lateness
Data parameters: V=1, U, =4, U, =4,R, =3, R, = 3,5 =4
1 0 0 0 62 34 12 14 21
2 2 2 2 2 4 4 4 4
3 0 0 0 15 12 8 8 8
4 9 0 0 33 40 59 59 36
5 0 0 0 10 11 10 | 10 11
I
In Table 5 we study the objective of minimising Table 7
average job lateness by setting all job values and . .
priorities to unity. In Table 6 we study an objective in Computing times in seconds
which heavy penalties are placed on jobs being late by
setting the job priorities to 4. This table records R o | PERMUTATION it iy B
maximum job lateness in the 5 cases.
In Table 7 we record the computing time on the IBM
7030 required by the various techniques. 1(5)8 (1)‘;: ;(6) i(l) (1)39
10. Conclusions 150 2-7 80 180 2-6
creion 200 49 | 260 800 4-2
From the above tables of results we can draw some 400 10-3 _ - 7.9
clear conclusions about the permutation procedure both . _
x AT . 600 35 26
as regards the quality of optimisation obtained and the

computation involved.

Firstly the permutation procedure offers significant
improvement over the heuristic scheduling methods with
which it has been compared. This is true for both the
neighbouring optimal permutations and the nearly
optimal. Furthermore the results reached by the
permutation procedures are consistently good whereas
the best heuristic technique varies from case to case.
Gere (1966) also found the same inconsistency in the
heuristic rules he studied. Part of the weakness of the
one-pass heuristic scheduling methods seems to lie in
their failure to bring predecessor operations forward in
time close to the final operation of the job, thereby
freeing resources for other final operations which may
thus be finished earlier. The neighbouring exchanges
achieve this adjustment, and as a by-product this will
lead to reductions in work-in-progress.

54

Secondly the permutation procedure is very flexible
and could be used for a wide range of scheduling
problems. Tables 5 and 6 have shown how the pro-
cedure can deal with the objectives of minimising
average job lateness or minimising maximum lateness.
But with an adjusted formulation the same type of
procedure could be applied either to other objectives
such as maximising resource utilisation or to different
problem structures, for example where set-ups are
important. The scope of a permutation procedure is
independent of particular mathematical forms for the
objective functions and constraints, and it is therefore of
wide application.

Thirdly, the computational time required to obtain a
neighbouring optimal permutation is quite small for

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dno-ojwepeoe//:sdiy wolj pepeojumod

Job-shop scheduling

small problems but rapidly increases. However, the
nearly optimal method offers answers which are nearly
as good for a significant reduction in computing time.
Also, the initial permutation as derived for this particular
problem offers consistently better results than the
heuristic methods for a very small increase in computing
time. For larger problems the best policy may be to
partition the schedule into segments and apply the
neighbouring exchange procedure to each segment in

turn, or else to terminate the exchanges automatically
when a given amount of computing time has been
expended.

The permutation procedure therefore promises con-
siderable returns over some of the established job-shop
scheduling techniques. The method is being used as
the basis for some scheduling studies currently being
undertaken in the rubber industry in co-operation with
the Rubber and Plastics Research Association.

Appendix

In this appendix we establish the result which was
assumed in Section 6, namely that the original optimisa-
tion problem formulated in Section 5 can be solved
optimally as a permutation problem using the trans-
formation proposed in Section 6. The same notation
will be used. We establish the result by proving two
theorems and a lemma.

Theorem 1

Given any optimal feasible solution {X’}, and any
positive integer g, there exists another solution {X*}
satisfying the following three conditions:

{X*} is feasible (A1)
{x*(1, 1), x*(1, 2), .. ., x*(j, k) —q, . . . x*(N, n(N))}
is not feasible for any individual pair (j, k) (A2)
and F{X*} is a minimum. (A3)

Proof

We assume that an optimal feasible solution exists
and denote it by {X’}. We now note that inequalities
(5) and (6) impose a lower bound on the x(j, k) variables.
Therefore if each of the variables x(j, k) is taken in turn,
as many times as necessary, their values may be reduced
by unit steps from x'(j, k) to new values x*(j, k), main-
taining feasibility throughout so that the set {X*}
satisfies conditions (A1) and (A2).

Also, as the functions g(j, #(j)) satisfy conditions (1)
and (2), and x*(j, n(j)) < x'(j, n(j)), F{X*} < F{X"}.
But as {X'} is an optimal solution, {X*} is also an
optimal solution satisfying condition (A3). This proves
Theorem 1.

Lemma

Referring to condition (A2), we now establish that the
loss of feasibility resulting from reducing the variable
x*(j’, k') to x*(j’,k’) —q in the solution {X*} is
independent of the values of the variables x(j, k) for
which

x*(j, k) = x*(j’, k). (A4)
Proof

When the value of x(j, k) is reduced below x*(j, k),

feasibility is lost through violating one or more of the

55

constraints (5), (6) or (7). Firstly, suppose k&’ = 1 and
constraint (5) is violated. Since A(j) is a constant this
violation is independent of the values of variables x(j, k)
satisfying (A4). Secondly, suppose £k’ > 1, and con-
straint (6) is violated. This violation depends on the
value of x(j’, k’ — 1). But since {X*} is a feasible
solution x*(j’, kK’ — 1) < x*(j’, k’), and again this vio-
lation is independent of the values of variables satisfying
(A4).

Thirdly, suppose constraint (7) is violated by reducing
x(j’, k') to the value x*(j’, k') — q. This implies that
the inequality

N n(G)
X X8,k D.r(j, k,m) +r(j, k', m) > S(I, m)
j=1 k=1

Gk # (7, &) (AS)

holds for at least one value of / in the interval
X*JLk)—q<1<x*(j,k)+d(j, k) —q.
But since {X*} is feasible we have
N n(j)
El k; 8(j, k, 1).r(j, k, m) + r(j’, k', m) < s(I, m)

j=
Uy k) # (s k)

in the interval x*(j, k) <I<x*(j, k) +d({’, k).
Therefore the inequality (AS) holds only for values of
I <x*(j’,k’). But for any value of I < x*(j’, k'),
8(j, k, 1) = 0, for all variables x(j, k) whose values are
greater than x*(j’, k’). Therefore the violation of the
constraint (7) is independent of the values of the
variables satisfying (A4). This establishes the Lemma.

Theorem 2

Given the optimum solution {X*} defined by (Al),
(A2) and (A3), there exists a permutation [P*] such that

{X*} = o P*]. (A6)
Proof

First we construct the following permutation [P*].
Given the solution {X*} we can determine an ordering
of the number pairs (j, k) as (j(i), k(iQ)) for i=1,T,
such that

x*((@), k(@) < x*(j(i + 1), k(i £ 1)).

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

Job-shop scheduling

We can thus use these ordered number pairs to define these results are independent of the value of variables

the permutation [P*] as x(j(i), k(i)) for i > I. Therefore the value of x(j(/),k(/))
Ty . . will be determined as x*(j(!), k()).

[P*] =[G, k1)), (D), k(2)), - - . G(T), k(T))]. But as {X*} is feasible, k(1) = 1 and by condition

Secondly we need to show that the transformation « (A2), x*(j(1), k(1)) = A(j(1)). Also the transformation
of (10) to (13) when applied to the permutation [P*] o will determine the value of x(j(1), k(1)) as x*(j(1), k(1)).

generates the solution {X*}. We prove this by induction. Hence by induction

Suppose we have generated the first (/ — 1) values by (X% — o[P*]

the transformation « as x*(j(i), k(i)) for i=1,71— 1.

The transformation now determines the value of and theorem 2 is proved.

x(j(I), k(1)) as the first feasible value. We know by We have therefore shown that the optimum to the
condition (A1) that the value x*(j(/), k(I)) — g is not permutation problem is also the optimum to the original
feasible for any positive integer gq. Also by the lemma optimisation problem expressed in the variables x(j, k).
References

BurkiN, M. H., CoLLEy, J. C., STEINHOFF, H. W. (1966). Load forecasting, priority sequencing and simulation in a job shop
control system, Man. Sci., Vol. 13, No. 2, p. 29.

BowmMman, E. H. (1959). The schedule sequence problem, Opr. Res., Vol. 7, p. 621.

CoNwAY, R. W., and MAXwELL, W. L. (1961). Network despatching by the shortest operation discipline, Opr. Res., Vol. 10, p. 51.

Cox, D. R. (1961). Queues, Methuan Monograph.

GERE, W. S. (1966). Heuristics in job shop scheduling, Man. Sci., Vol. 13, No. 3, p. 167.

GIFFLER, B., and THOMPSON, G. L. (1960). Algorithms for solving production scheduling problems, Opr. Res., Vol. 8, p. 487.

HELLER, J., and LoGEMAN, G. (1960). An algorithm for constructing feasible schedules and computing their schedule times,
Man. Sci., Vol. 8, p. 168.

KELLEY, J. E. (1961). Critical path planning and scheduling: mathematical basis, Opr. Res., Vol. 9, p. 296.

MANNE, A. S. (1960). On the job shop scheduling problem, Opr. Res., Vol. 8, p. 219.

MELLOR, P. (1966). Job shop scheduling—a review, Opr. Res., Quat. June 1966.

NicHOLSON, T. A. J. (1967). A sequential method for discrete optimisation problems and its application to the Assignment,
Travelling Salesman and three-machine scheduling problems, (to be published in Journal of Institute of Mathematics and
its Applications).

ROWE, A. J. (1960). Toward a Theory of scheduling, Journal of Industrial Engineering, March 1960.

SissoN, J. (1960). Sequencing Theory, Chapter 7. Progress in Operation Research, Ed. R. L. Ackoff, New York: Wiley.

WAGNER, H. M. (1959). An integer linear-programming model for machine shop scheduling, Naval Logistics Quarterly, Vol. 6,
p. 131.

WooDGATE, H. S. (1966). Some recent developments in network based resource allocation techniques, Proceedings of 1966
British Joint Computer Conference, p. 95.

Book Review

Operations Research in Seller’s Competition: A Stochastic These are the problems and questions which Professor Sengupta
Microtheory, by S. SANKAR SENGUPTA, July 1967; 228 pp. considers in this book.” The author brings to bear a powerful
(New York and London: John Wiley & Sons, Inc., 80s.) battery of statistical techniques to study these problems. As

an exercise in applied statistics the book is a tour de force
and is a valuable contribution to the stochastic theory of
micro-economics.

It is, however, published as Volume 13 of the series of
publications in Operations Research, sponsored by the
Operations Research Society of America. It is doubtful if
can an understanding of these aspects of selling lead to many practising Operational Research scientists will make
correct decisions about: pricing, advertising and selling costs, much of the book because the theory out-runs the practice.

the production inventory complex, and capital investment? ANDREW YOUNG (Liverpool)

The publishers’ description of the book says ‘Given the mode
of competition and the existing organisation of the market:
how do the actions of individuals bring about specific patterns
of relationships among the observable market variables?
What are the specific measures of uncertainty which would
seem to characterise an individual firm’s outcome? How

56

¥202 I4dy 0Z uo 3senb Aq ZGevZ/8/L/ L L/eIoie/|ulwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

