The development of on-line computing facilities for the KDF9
Part 1: COSEC—A single on-line console

By P. C. Poole and T. Lang*

This paper describes the first stage of a project to provide multi-access facilities in the Egdon
system operating on a KDF9. Initially, on-line access was obtained through the single monitor
console and a user could interrupt a background job to initiate such foreground tasks as program

amendment and execution.

(First received April 1967, and in revised form December 1967)

Most people to-day are convinced of the benefits to be
obtained from providing multi-access on-line facilities
in a computer system. There is, however, still a great
deal of debate about the price that should be paid for
this mode of operation. In the early systems, which
pointed computer development towards multi-access, a
considerable overhead was incurred in swapping pro-
grams in and out of core to provide the quick response
users expect from ‘conversational’ interaction. This
overhead could be tolerated on the grounds that thesc
experimental systems were dedicated to exploring the
possibilities of on-line techniques, and would perhaps
lead to the design of more efficient systems in the future.
Such arguments, however, cannot be applied to justify
the extension of a current system to include on-line
access, particularly where the computer is already
heavily committed in a batch processing mode of opera-
tion. Yet many groups have felt that such extensions
should be made, and we, at Culham, share this view.
Thus, the problem is to design a multi-access system in
which overheads are kept to a minimum, but in which
the user is provided with as many of the advantages of
on-line access as possible. We are carrying out such a
project for a KDF9 which operates under the Egdon
system (Burns, Hawkins, Judd and Venn, 1966), and
have adopted as the underlying philosophy the concept
of providing interaction with a console only when abso-
lutely necessary, i.e. the system will not be ‘conversa-
tional’ in all aspects of its operation but will interact
with a user only when an error is detected. The first
stage of the project is known as COSEC (Culham On-line
Single Experimental Console) and it is the purpose of
this paper to describe briefly the structure of this system,
the techniques employed to implement it, and the way
in which it has been used to develop multi-access
facilities.

COSEC was developed primarily as a tool to assist in
the implementation of the final system. It provides
on-line access from the monitor console and enables a
user to interrupt a background job to initiate such fore-
ground tasks as program amendment and execution.
There were a number of reasons for choosing to start
with a single console, of which the following may be
mentioned:

(a) it was the obvious first step in a ‘bootstrap’
operation to produce a multi-access system,

(b) the monitor console was already available and no
additional hardware was required,

(¢) much of the new software developed for the uni-
access system would carry over directly to a
multi-access environment.

No claims are made that COSEC is highly efficient in
all aspects of its operation. Some of the problems
encountered in adding on-line facilities to an existing
system forced us to make decisions on the grounds of
expediency only. Many of these difficulties have since
been removed, and the fact that we have been able to
make such changes has largely been due to the avail-
ability of COSEC itself. The first version of the multi-
access system called COTAN (Culham On-Line Task
Activation Network) is free of many of these ineffi-
ciencies, and represents a much closer approximation to
our ultimate goal.

File storage system

On-line access usually implies the provision of facilities
which allow console users to manipulate named data-sets
or files held on a backing store. In COSEC, files are
stored on the disc in the logical disct assigned to the
function of BLOCK SUBSTITUTION. Block (some-
times called data) substitution is a particularly powerful
feature of the Egdon system which is equivalent to the
macro facility found in some programming languages.
If the supervisor of the system (hereafter called the
Director) encounters a control card of the form
*SUBSTITUTE <name> in the input deck, it will search
through an index to the block substitution area. If the
required name is found, the corresponding block of
card images will be read from the disc and inserted in
the input stream. The mechanism has been extended at
Culham to allow control cards to be included in such a
block, and it is therefore possible to store a complete
Egdon job deck on the disc. The decision to use the

t The physical tracks on the disc are grouped into units called
‘logical discs’. A particular function of the system is associated

with each of these logical discs. The KDF9 disc has a capacity of
4 x 106 words and an average access time of 250 msec.

* Computing and Applied Mathematics Group, Theory Division, Culham Laboratory, U.K.A.E.A., Abingdon, Berks.

¥20Z Iudy 61 U0 1senb Aq €LZizy/S/L/1L L/aIonte/ufwod/woo dnoolwspeoe//:sdiy woly papeojumoq

COSEC

block substitution area for the storage of on-line files
meant that no modifications to the existing system were
required to allow such files to be accessed by a job in
the background stream. However, this run-time access
is read-only, as blocks may not be altered except during
a special session when the systems program, DISC
UPDATE, is in operation. Further, the access is un-
restricted, since any program may read any block. This
situation is unacceptable in an on-line system where a
user must be able to alter the contents of a file from the
console. Hence, it was first necessary to impose a
structure on these blocks to define the relationship
between users and files, and thereby to set up the appro-
priate mechanisms for file protection.

An on-line file consists of two consecutive blocks in
the block substitution area; the first, known as the
file head, contains descriptive information about the
file; the second, the file body, contains the actual infor-
mation stored in the file. Both the file head and the file
body may be manipulated from an on-line console,
providing the user has the authority to do so. Part of
the former is, however, protected by the system and
contains the following information:

(a) the name of the file and of its owner, the date on
which it was created ;

(b) the format in which the information is stored in
the file body;

(¢) the size of the file body and the amount of space
reserved for it. Since there is as yet no mechanism
in the Egdon system for the dynamic allocation
of disc space, sufficient space must be reserved for
a file when it is created to allow for possible future
expansion. A file may, however, be moved if it
has outgrown its current allocation;

(d) the number of read accesses made to the file and
the time at which the last read occurred;

(e) the number of times the file has been altered, the
name of the user who last altered it, and the time
at which this occurred.

The remainder of the file head, which may be amended
by the file owner, determines who may access the file
and in what manner. Read-only access is controlled
by a READ status and read-write access by a WRITE
status. If the value of a status is PUBLIC, then anyone
is permitted to use the corresponding method of access;
if PRIVATE, then only those users whose names appear
in an associated list in the file head may address the file.
This list also indicates the type of access permitted each
user, and summarises the frequency and last occurrence
of each such action. Absolute security is provided for
the file by setting its WRITE status to PROTECT. Even
the owner of such a file cannot alter its contents without
first changing the status back to PRIVATE. Since the
information defining file status is accessible to the file
owner, any status value is interpreted in a ‘fail-soft’
manner; i.e. any unrecognisable value is assumed to be
PROTECT.

One of the files owned by the Operations Manager

contains a list of the names of persons authorised to use
the system. Associated with each name is a password
and an upper limit on the amount of disc space available
to the user for permanent storage. This file, which is
called the ONLINE INDEX, also holds statistics
describing the use each person has made of the system
(e.g. time at console, c.p.u. time, disc space in use, etc.)
together with an overall summary. The Operations
Manager can, at any time, examine the state of the
system by listing the ONLINE INDEX on the console.
By using the standard amendment facilities, he can alter
this file to control the way in which the system is used.
Some of the command programs also access the ON-
LINE INDEX to use the information stored in it or to
update the statistics.

Any system providing on-line access for a number of
users must contain back-up facilities for preserving files
on some medium other than the disc. Initially the
standard Egdon programs DISC UPDATE and DISC
PRIME were used to carry out this operation. One of
the actions of the former program is to copy the
BLOCK SUBSTITUTION area on to magnetic tape.
In the process, new files can be added from the card
reader and existing files deleted. The second program
merely copies this tape back to the disc.

User interface

The on-line user communicates with COSEC via the
monitor typewriter. The system first types the query
‘name;’ to which the user replies with the name of one
of the command programs. If the command is not
recognised, the user is informed and the query repeated;
if the command is legal, the system responds with the
query ‘data;’ and the user supplies any information
required by the program. When the data is complete
the system calls in and enters the appropriate command
program. Output is returned to the user at the console
and the above cycle re-entered. Facilities are provided
for cancelling excessive output or incorrect input and
for editing the input character stream.

It should be noted that the background job stream
continues to operate while the console is involved in
any of the input/output transfers mentioned above.
Considerable time could therefore be wasted if the con-
sole was required by the system while the user was
typing in a large amount of data. For this reason, a
small hardware modification was made to enable the
Director to produce both audible and visual signals
warning the user that it has output for the monitor.
The user can then release the console, either by can-
celling the input or by typing appropriate characters
which cause the input to be preserved. When the out-
put from the background system is complete, the current
query is repeated and the user is then able to continue
from where he left off. These interruption facilities
may also be invoked if the machine operator wishes to
use the console.

In addition to the mode described above, the COSEC
system may also be operated by a sequence of com-

¥20Z Iudy 61 U0 1senb Aq €LZizy/S/L/1L L/aIonte/ufwod/woo dnoolwspeoe//:sdiy woly papeojumoq

COSEC

mands and data input through the paper tape reader.
In this mode, output can be directed either to the
monitor or to the paper tape punch. In the latter case,
the output tape is passed through a mechanical reader
and printed on a Flexowriter in the data preparation
room. Hence the system may be used in an off-line
manner to provide a high priority service on an interrupt
basis for a number of users who require short turn-
round times for program development.

Commands

A list of the commands available together with their
respective functions is given in Table 1. The number of
commands has been kept to a minimum and many of
those which one normally associates with file control
are implied in the ability of a file owner to amend a
file head.

After successfully logging in, a user will normally open
a file, amend it, cause it to be executed, and selectively
scan the output stored on the disc. He may then con-
tinue to cycle through the commands AMEND, RUN
and PRINT until satisfied that the program is working.
(At any time, he can issue a variation of the RUN
command which causes the system to produce hard copy
output on the line printer and card punch.) At the end
of the session he will usually save the file before logging
out. Needless to say, the commands have a hierarchal
structure with the necessary protective interlocks, e.g. a
file cannot be amended until it has been opened. An
example of a demonstration session at the console is
shown in Table 2. The background job in operation at
the time did not use the monitor and all console messages
in this table relate to the on-line system.

The complementary commands, OPEN, and SAVE,
are two of the most important in the available set.
OPEN, after first checking the user’s right of access,
copies the named file into another area of the disc called
the file nesting store (FNS). In analogy with a push-
down stack, the only directly accessible file in the FNS
is the one in the top cell. The concept of a file nesting
store has proved extremely useful in the situation where
on-line facilities are being provided within the frame-
work of an existing system. Information to be accessed
on-line must still remain available to parts of the system
already in existence. The format of this information is
therefore fixed and any change might necessitate exten-
sive modifications to the current system. Further, the
information may exist in a number of different formats.
Thus, the commands which move information between
the FNS and other areas of the disc can provide the
necessary mechanisms for transforming all the different
formats into a standard one. Hence, any command
which operates on the FNS need only be designed to
accept files in the standard format. Further, these
commands are address-less in the sense that once a user
has ‘opened’ a file, he can continue operating on it with
various commands until he decides to change to another
file. If the file in the top cell of the nesting store is
inadvertently destroyed, it can always be recovered from

the permanent storage area by means of the OPEN
command. Conversely, the ‘opened’ file may be saved
from time to time either in its original position or in
another temporary file thereby ensuring that an up-to-
date copy is always available. Another advantage of the
concept is that space in the region of the disc assigned
to the file nesting store may be allocated dynamically,
and hence economically, in a very simple manner.

The RUN command enables the foreground user to
interrupt a background job and initiate execution of the
‘opened’ file. All the facilities of the EGDON system
are available to a foreground job since it is processed by
the standard system programs. However, these normally
produce a considerable quantity of output on the line
printer, and it would have required a major effort to
modify them so that a selection of this information could
be sent directly to the console. Hence, the solution
adopted in COSEC is to file all output on the disc in
the top cell of the FNS. The user is informed when the
on-line run has finished and can then use the PRINT
command to scan this output file as many times as
required. The parameters supplied as data to this com-
mand specify the type of output and the basis on which
itis to be selected. For example, a parameter of the form

{character strings)/n/m

indicates that all lines which commence with a specified
character string are to be output together with the n
preceding and the m succeeding lines. Thus to obtain
all failure messages from the compilers at the console,
it is only necessary to issue the PRINT command with
parameters:

(FAIL)/1/1

The results obtained from this process are illustrated in
Table 2. Since the PRINT command labels all output
with an absolute line number, it is a simple matter to
extract any piece of information from the output file.

Implementation

As mentioned previously, COSEC was the first stage
of a project to provide multi-access to an Egdon KDF9
and is currently being used in the development of the
final system. However, COSEC itself was implemented
by a bootstrap technique. Using the background job
stream, we expended about 3 man-months of effort to
produce the following:

(a) simplified versions of OPEN and SAVE which
ignored file structure and ownership:

(b) a RUN command with direct output facilities only;

(¢) the commands UPDATE, CHECK, RESET,
CRDEDIT;

(d) the necessary extensions to the existing Director
to control the system.

We then used the primitive form of on-line access
afforded by these facilities to develop the remainder of
the system. This resulted both in a saving of effort
and an increase in efficiency, since job turn around time
was reduced from hours to a few minutes.

¥20Z Iudy 61 U0 1senb Aq €LZizy/S/L/1L L/aIonte/ufwod/woo dnoolwspeoe//:sdiy woly papeojumoq

COSEC

FUNCTION

Checks that the person at the console is an authorised user and, if so,

Updates statistics in the ONLINE INDEX, outputs a summary of the
on-line session and of the state of the user’s files, resets system in

Allocates space for a new file provided user’s allotment of disc space

Informs on-line system of the existence of a new file, if format is
correct. The file may have been established via the CREATE com-
mand or loaded to disc during a DISC UPDATE run.

Deletes file from on-line system and marks it to be removed from
disc during next DISC UPDATE run.

Locates a named file, checks that user is allowed read access and, if so,
copies file into first cell of file nesting store. Also provides facilities

Copies the ‘opened’ file from the top cell of the FNS, over-writing a
named file after first checking that user has write access to this file.

Edits the ‘opened’ file on the basis of character strings. Also provides
facilities for listing the file or part thereof.

Edits the ‘opened’ file on the basis of card numbers. Also provides
facilities for renumbering a file and for merging or comparing two

Causes the ‘opened’ file, if it constitutes a job deck, to be processed by
the Egdon system. Output is filed on the disc in second cell of FNS.

A special command, similar to RUN, used for compiling system

Interrogates output file selectively on the basis of line numbers and
character strings and prints results on the console.

Informs on-line system about command programs currently available.

Used for system debugging since it activates and tests all facilities in

Table 1
Commands currently available in COSEC
CLASS NAME
User LOGIN
Identification initialises the system.
LOGOUT
readiness for next user.
File CREATE
Maintenance is not exceeded.
INITIAL
DELETE
File OPEN
Manipulation
for concatenating files.
SAVE
RESET Empties the file nesting store.
AMEND
CRDEDIT
files.
Job RUN
Execution
NJCRUN
programs.
PRINT
System UPDATE
Maintenance
CHECK
the on-line supervisor.

Many of the decisions made during the implementation
of COSEC were dictated by the existing structure of the
EGDON system rather than by considerations of effi-
cient design. The main problems occurred with the
Director, which is a large (6K) non-segmented program
residing permanently in core store. Its size could only
be increased by a few hundred words before existing
users with large programs were seriously inconvenienced.
Further, the way in which the system addressed the
disc complicated the problem of interrupting a back-
ground job to initiate one in the foreground.

COSEC consists of 4 main elements and these will
now be described briefly.

(@) Console Control Package (CCP)

This is a small subprogram added to the existing
Director, which is multi-programmed along with other
Director subprograms and the background job. Its
main functions are to control the flow of messages to
and from the console and to call the On-Line Supervisor
into core when required. Whenever the CCP is held up
waiting for an I/O transfer to terminate, the processing

¥20Z Iudy 61 U0 1senb Aq €LZizy/S/L/1L L/aIonte/ufwod/woo dnoolwspeoe//:sdiy woly papeojumoq

COSEC

Table 2

Demonstration session of the COSEC system

CONSOLE MESSAGES

COMMENTS

name; LOGIN.+
datajAD1 /ADEMON/ADHJIPP/ .+

<o>
21/01/67 11.15
SPACE RESERVED - 000100 BSU

SPACE ALLOCATED - 000096 BSU+
name ; OPEN. -+
data;COMTAB/AD.~

<o>

OPEN

CLASS A

RESERVED SPACE 000020 BSU
FILE SIZE 000013 CARDS

LAST UPDATED 21/01/67 11.09+
name ; AMEND .+

data;P

-

<o>

CONTROL/WV95/WO/*

mmm mo\/?rsvu/svsrns/rmu:/zo
DISC PROGRAM ONLINEDEMON

CHAIN 1

FORTRAN

SUBROUTINE TAB(X,Y,XMIN,XMAX,NPTS)
XMIN=0.0

sra e

new size 13
-
name ; RUN.~+
dataj .+

P
TINT WV95+
UNPAUSE

*11.17START
JOBORGANISER

#11.17 BEGIN JUBO9090|/PPSPM/S‘ISTBHS/POOLE/20
UNCOMPTLED ROUTINE

PPSPAA END

RAN/EL/000M06S/000M14S
TINT WO+

PAUSE

P
<o>

ON LINE RUN COMPLETE+
name ; PRINT .+

dataj;L2
<PAIL>/1/1/.+

XMAX3.0
oozg PAILURE 333, O
0028 333 v §mﬂ‘nnau: KEYWORD

0031 FAILURE 200, 6
0032 200 SYNTAX ERROR (E.G. *+)

name; AMEND. +

new size 13
-

name;RUN.+
dataj .+

.-v_-o.o.a--o
WV95+
UNPAUSE

*11.20START
JOBORGANISER

1, i: BEGIN JOBO90901/PPSPAA/SYSTEMS/POOLE/20
PPSP.
nm/sx,/ooonoss/ooomss
uusx

bbb baba bt

<o>

ON LINE RUN COMPLETE-+
name ; PRINT .+

data;L2

<BEG INDEM><ENDDEM>

-

0066 BEGIN DEMO
Y

0.
0.10005 01
. 0.3200p 02
0.30009 01 0.2430 03
END DEMO

2
FWNaH
°
&

e

ADEMON LOGGED QUT AT 11.24.02
TIME ONLINE 005265+

=

=

USER A.DEMON LOGS IN ,SUPPLYING PASSWORD CONTAINING
NON-PRINTING CHARACTERS, HIS NAME AND JOB CODE. ALL
USER INPUT POLLOWS THE ; CHARACTER AND IS TERMINATED
BY » (END MESSAGE). THE REHAINDER OF THE CHARACTERS
ARE OUTPUT BY THE SYSTEM

FILE COMTAB/AD IS OPENED. (1 BSU = 10 WORDS)

FILE IS LISTED VIA AMEND COMMAND.

FILE IS AN EGDON JOB DECK WHICH CONTAINS A FORTRAN
SUBROUTINE TAB. AT EXECUTION, THIS HILLHSICCCHPIL!D
8¢

W.
STORED IN RELOCATABLE BINARY ON THE DISC. PROGRAM
TABULATES Y = P(X) AT EQUAL INTERVALS WITHIN A
RANGE AS DEFINED BY XMIN, XMAX AND NPTS.

BACKGROUND JOB IS SUSPENDED AND OPENED FILE IS
PROCESSED IN THE FOREGROUND STREAM.

SUBROUTINE TAB FAILS TO COMPILE AS IT CONTAINS
ERRORS IN SYNTAX.

BACKGROUND JOB IS RESTARTED.

COMPILER FAILURES OBTAINED FROM THE OUTPUT FILE
STOR

ED BY THE RUN COMMAND ON THE DISC..

PI'LE IS AMENDED. UNDERLINED CHARACTERS ARE
IRECTIVES

. E.G.

COPIES LINES TO BEFORE LINE COMMENCING WITH
SPECIFIED CHARACTER STRING

COPIES CHARACTERS IN CUHHD!T LINE TO AFTER
SPECIFPIED CHARACTER STR.

INSMS SPECIFIED CHARACTKH STRING AT CURRENT
TON IN CURRENT L.

FOREGROUND JOB PROCESSED SUCCESSFULLY.

PARAMETER CAUSES PRINT COMMAND TO OUTPUT ALL LINES

ICING WITH CHARACTHS BEGINDEM TO

FROM LINE COMMEN(
LINE WHICH STARTS WITH ENDI

RESULTS OF TABULATION. Y = XT5 FOR X = 0.0(1.0)3.0

ﬁ!ﬂ LOGS OUT. COMPLETE SUMMARY OF SESSION IS SENT

THE LINE PRINTER.

¥20Z Iudy 61 U0 1senb Aq €LZizy/S/L/1L L/aIonte/ufwod/woo dnoolwspeoe//:sdiy woly papeojumoq

COSEC

of jobs in the background stream continues. At the
end of an output transfer, the CCP either fetches the
next section of output from the fixed head disc* for
transmission to the console, or returns to the input
state; when an input transfer finishes, the CCP either
writes the input to the fixed head disc and calls for more
input, or fetches the on-line supervisor into core. The
latter action involves suspending the background job
and preserving a section of it on the fixed head disc,
since the on-line supervisor and the command programs
operate in the user area of core.

(b) On-line Supervisor (ONSUP)

The on-line supervisor which is compiled with the
Director, is written away to the fixed head disc whenever
the Director is loaded into the machine. ONSUP is the
chief executive program of the COSEC system and
carries out the following functions:

(i) checks the validity of the command input by the
user;

(ii) edits the data input from the console;

(iii) calls down from the disc the appropriate com-
mand program or, if a foreground run has been
requested, the On-Line Director;

(iv) supervises the running of a command program.

(c) Command programs

The command programs function in supervisor mode
and are essentially segments of the Director. Each
program is, however, independently compiled, and it is
therefore a simple task to add new commands to the
system as required. Communication between a com-
mand program and the remainder of the system is
carried out via a software interface. At entry, a com-
mand program is supplied by ONSUP with the base
address of a list of addresses. Each entry in this list may
be the address of a subroutine, the address of an I/O
buffer or the base address of a list of parameters. The
subroutines carry out functions common to all command
programs, e.g. disc transfers, clock update, message out-
put, allocation of work space; the parameter lists provide
the permanent storage for information which has to be
transmitted from one command program to another.
Fig. 1 illustrates the map of core store when a command
program is being obeyed.

When a new command program is to be added to the
system, it is first checked-out on-line in user mode with
a set of routines which simulate the action of the inter-
face and the on-line supervisor. This technique has
proved to be very effective, as few errors have been
encountered when these programs were eventually
incorporated in the system.

(d) On-line Director
Whenever a RUN command is detected, ONSUP

* The fixed head disc has a capacity of 3840 words and an
average access time of 30 msec. Part of it contains the on-line
supervisor while the remainder is used as an 1/O buffer and for core
dumps.

10

D—B

D C o W B
D Director
C command program
(0] on-line supervisor
A\ working space for command program
B : residual part of suspended background job

D—B : normal boundary between Director and background

job.

Fig. 1. Map of store when a command program is being

obeyed

dumps the background job and Director on the disc.
It then reads in a second copy of the Director which has
been modified to accept input from the disc (the opened
file), and to return output to the top cell of the file
nesting store. This Director also contains a different
allocation of space on the disc. Hence, job-dependent
logical discs may be duplicated, and the background job
can be interrupted at any time. Once the On-Line
Director has been provided with the date and the current
state of the clock, it processes the foreground job auto-
matically, requiring no manual intervention unless there
is an error in the control information supplied with the
job. When the foreground run is completed, ONSUP is
recalled and it, in turn, restores the background job stream.
In implementing COSEC, we used the technique of
calling in a second version of the Director, because it
enabled us to provide facilities for interrupting a back-
ground job to initiate one in the foreground with a
minimum of effort. However, the process is very
inefficient, with a poor response, since a large amount
of core must be swapped. Further, it would be un-
acceptable in a multi-access situation since it prevents
commands from other consoles being serviced.

Operational experience

COSEC has been fully operational since April 1966
and represents about 12 man-months of effort. Its use
has been restricted mainly to the Systems Programming
Section, although it has been made available to a limited
number of application users on an experimental basis.
It is generally felt by users that the system is somewhat
confusing to operate when the background job stream
is making heavy demands on the console. The continual
interruptions make concentration difficult, and users
tend to choose periods when long jobs are being pro-
cessed. However, as an example of the advantages
offered by the system, we can compare the times required
to check out two of the command programs. CRDEDIT,
which was developed in the background stream, required
2 weeks of testing; LOGIN, a program of similar com-
plexity which was developed on-line, required only 2 days.

The response time of COSEC is very short, as would
be expected with only one console. For all commands
except RUN, the overhead due to core swaps is about
2 sec per command. Thereafter, the response time is a
function of the total size of the disc transfer involved,

¥20Z Iudy 61 U0 1senb Aq €LZizy/S/L/1L L/aIonte/ufwod/woo dnoolwspeoe//:sdiy woly papeojumoq

COSEC

since all these commands are disc limited; e.g. to open
at a file of 500 cards takes about 2 sec at the average disc
transfer rate of 5000 words/sec. No response is obtained
from the RUN command until about 10sec have
elapsed. There is a similar delay at the end of the
foreground run when return to the background system
occurs.

When the first COSEC commands were written, it
was felt that users would require as much output infor-
mation as possible—e.g. for OPEN, the name of the
file, the reserved and occupied sizes, the format of the
contents, and the time and date when the file was last
updated. However, a little experience showed that such
verbosity was extremely irritating particularly to the
more experienced users. In COTAN, output of such
information has been greatly reduced and may be sup-
pressed entirely if specifically requested by the user. On
the other hand, during the input phase the user does
feel the need for more frequent prompting than just the
‘name’ and ‘data’ queries of COSEC, and this feature
has been considerably enhanced in COTAN.

It is of interest to compare the use of the two editors
available in COSEC. The line number editor was avail-
able first, but as soon as the context editor was written,
users quickly showed their preference for this mode of
operation. This command has proved very attractive
and convenient to use, and was well worth the labour
involved in writing it. The line number editor still finds
some use for large scale modification of files, e.g. merging
of two files.

It should be noted that COSEC does not embody a
full implementation of the philosophy ‘interaction only
when absolutely necessary’. It is a step in this direction,
since a user may type in a large amount of data before
actually calling on the system to obey the command.

Reference

However, if the data is incorrect, the only interaction
currently provided is to ask the user for another com-
mand. Any data following the offending section is lost.
Thus, users tend to break up lengthy input sequences
into a number of short sections to avoid the possibility
of having to retype. However, this situation has been
corrected in COTAN, and the facilities available in this
system which allow a user to input a large amount of
data with confidence will be described in a later paper.

COSEC does not attempt to handle the problem of
interaction between a user and his own program.
Clearly this is possible, since there is only one console,
but it is obviously a very inefficient use of the machine.
The problem is still with us in COTAN, but interaction
is allowed if the program is small ((8K).

Conclusion

In a computer with a comparatively slow backing
store, the cost of allowing complete user interaction in
all phases of on-line operation is probably prohibitive.
However, if such interaction is restricted mainly to file
manipulation and then provided only when absolutely
necessary, the resulting system can be attractive and
convenient to use while still being reasonably efficient.
COSEC has illustrated the feasibility of such an approach
to on-line access within a batch processing system, in
addition to providing a very powerful tool for future
development.

Acknowledgements

The authors wish to thank Dr. K. V. Roberts and
Dr. K. W. Morton for many helpful discussions and
suggestions. We are also indebted to Mr. G. Bernau
and Mr. D. C. Carpenter who coded and tested some of
the command programs.

Burns, D., Hawkins, E. N, Jupbp, D. R., and VENN, J. L. (1966). The Egdon System for the KDF9, Computer Journal, Vol. 8,

p- 297.

Book Review

The Design and Analysis of Scientific Experiments, by K. C.
PeNG, May 1967; 217 pp. of text, 29 pp. of appendices.
(New York: Addison-Wesley Publishing Co., 72s.)

This is a theoretician’s book, being mainly concerned with
the analysis of variance in factorial experiments. Described
by the author as ‘designed for statisticians, computer
programmers and persons engaged in experimental work who
have some background in mathematics and statistics’, this
book does not seriously compete with the well-known texts
‘with similar titles.

Statisticians will find little in this book which is not
discussed more thoroughly elsewhere, nor will they find
references to recent work in this field. Students of statistics
may, however, obtain profit from studying the middle
chapters on factorial design where the author is at his best.

For computer programmers the main interest will be in
the use of the operator calculus for partitioning sums of
squares in balanced factorial schemes. Three FORTRAN
programs are supplied in the appendices (i) for complete

11

factorial designs (ii) for Latin squares and (iii) for 2" fractional
replicates. By modern standards these programs are very
limited in their conception of the users’ needs (see e.g. Yates,
F. and Anderson, A. J. B. (1966) Biometrics Vol. 22,
pp. 503-24), and would require considerable extension to be
of much practical use. Real users want to present data in
a way that suits themselves and not the programmer, and
want a readable output over which they have some control,
ideally an output which could be published without further
explanation. A general program should be able to derive
combinations of variates, to estimate missing data auto-
matically, to compute nominated orthogonal effects etc.

Experimentalists will not be greatly helped by this book
as there is little discussion of the reasons for choice of design
or of the meaning of the analysis. The numerical examples
are all fictitious, and the multiple summation formulae are
not well suited for instructing laymen in the computation
of analyses.

G. J. S. Ross (Rothamsted)

¥20Z Iudy 61 U0 1senb Aq €LZizy/S/L/1L L/aIonte/ufwod/woo dnoolwspeoe//:sdiy woly papeojumoq

