Cluster analysis on the Atlas computer

By M. J. Shepherd* and A. J. Willmott**

This paper discusses the programming implementation of Sneath’s Single Link Taxometric
Analysis for the Atlas 1 computer and the modification of this method which the authors have
developed to overcome any chaining that occurs between otherwise well separated clusters. Two
distinct algorithms are presented for Single Link Analysis.

(First received June 1967)

The purpose of Taxometric Analysis is to separate a
population into distinct groups or clusters, each cluster
being defined in terms of the qualities or attributes which
the members of the cluster have in common. This is
achieved by first computing a measure of association, a
similarity coefficient between each and every member of
the population or operational taxonomic unit (0.T.U.).
The simplest coefficient might be defined as:

number of attributes shared
total number of attributes

Many other coefficients have been proposed and a fairly
comprehensive list is presented by Sokal and Sneath
(1963). For example, if all the attributes were parametric,
the correlation coefficient might be employed.

It is assumed in this work that a matrix of similarity
coefficients, or similarity matrix, can be computed. In
the number of practical problems tackled using our
programs, we have found that unless unnecessary rigour
is enforced upon the format of the source data for
analysis, it is easier to define the similarity coefficient for
each set of data—usually this consists of a heterogeneous
mixture of binary and multistate qualitative attributes
together with several parametric attributes. Once the
coefficient is defined, the matrix of coefficients can be
computed and output onto magnetic tape or perhaps
punched paper tape in a format acceptable to our cluster-
ing programs. This approach is preferable, we believe,
to the one where the source data is required to be in
binary form, for example, and the user of the clustering
programs needs to convert his data in an arbitrary and
perhaps artifical way into this form. It has the added
advantage that the user of the programs is called upon to
think closely about the measure of similarity he is
proposing for the cluster analysis.

In single link clustering, an O.T.U. belongs to a
group at specified level of similarity, L, provided that the
similarity coefficient between that O.T.U. and at least
one other O.T.U. in the group is greater than L. In k-link
clustering, an O.T.U. requires to be similar to at least k
members of the group. If the number of group members
is less than k, the O.T.U. requires to be similar to all
members of the group.

A little consideration will lead to the conclusion that
the algorithm to be employed for a cluster analysis of

this type, because it requires all the coefficients of the
similarity matrix to be scanned at least once, must be
influenced by the hardware of the computer available. A
computer with a relatively small fast store requires that
all but the smallest similarity matrices be stored on
magnetic tape or magnetic disc.

Under these circumstances, the fewer the inspections
of each row of similarity coefficients the better, and in
the case of magnetic tape, the rows should be called for
sequentially. However, in the case of the Atlas computer
at Manchester University a one-level main store con-
sisting of 96K 48-bit words on drums and 16K words
in core exists of which a user might call for 60-70K
words without disturbing the normal running of the
computer’s operating system. This is described by
Kilburn et al (1962). 1t is possible therefore to have the
whole matrix in the main store of the machine and to
use an algorithm which generates random accesses to
the rows of the similarity matrix. Usually it is sufficient
to store the similarity coefficients to 3 significant figures
only, in the range 0-1000, and in which case by packing
3 coefficients to an Atlas integer word, quite large
matrices can be held in the main store. Further, by
storing only the upper triangle of what is a symmetric
matrix of similarity coefficients, further economies can
be made.

If the upper triangle of the similarity matrix is held in
packed form, 3 coefficients per word, then a penalty is
enforced by the computing time required to unpack the
coefficients and to reconstruct each whole row of the
matrix. For cluster analysis involving up to 300
O.T.U.s this is tolerable. If populations of 500 are
tackled, the time required for coefficient unpacking and
row reconstruction becomes excessive and it is preferable
to hold the matrix of unpacked coefficients on magnetic
tape and to use a different algorithm. It is possible to
use an unpacked square matrix stored in main store for
up to 200 O.T.U.s without using excessive store.

Single linkage algorithms

1. Random calls for the rows of the similarity matrix

This algorithm requires two subsidiary vectors in
addition to the row of similarity coefficients currently
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being inspected. These might be declared in an
ALGOL-like language as

integer array list 1, list 2 (1 : n)

where 7 is the number of O.T.U.s to be clustered. The
O.T.U.s are given arbitrary reference numbers 1, 2, . . . n.

The address of a storage element in the vector list 1 is
equal to the reference number of an O.T.U. and, at the
end of the analysis, the content of that element is equal
to the number of the cluster to which that O.T.U.
belongs. In list 2, the storage element contains the
reference numbers of the currently already clustered
O.T.U.s. There are three pointers employed.

Pointer 1 contains the reference number of the O.T.U.
around which the clustering is currently proceeding.
Pointer 1 therefore also holds the current number of
the row of the matrix being examined.

Pointer 2 contains the address in the array list 2 where
the reference number of the next O.T.U. to be
clustered is placed.

Pointer 3 contains the address in the array list 2 in
which is contained the reference number of the next
O.T.U. around which clustering is next to proceed.

Initially, all pointers are set to 1. The first row of the
matrix is scanned and the reference numbers of the
O.T.U.s with whom O.T.U.1 is linked, that is, with whom
O.T.U.1 has' sufficiently 'great 'similarity, are copied
into list 2 and pointer 2 is advanced. At the same time,
in the positions, corresponding to these reference
numbers, in list 1 is placed the current cluster number.

When this examination of row 1 is completed, pointer
3 is advanced by 1, and row p of the similarity matrix
is inspected, where p is the reference number contained
in list 2 (pointer 3). Where possible, further additions
are made to the cluster and the necessary entries are made
in the arrays list 1 and list 2. Again pointer 3 is
advanced, and a new row of the matrix is inspected.
This process is exhaustive, that is once a cluster has been
formed and the row associated with ‘last’” member of
cluster, examined, the pointer 3 will point to a zero entry
in list 2. At this stage pointer 2 will equal pointer 3.

Next the cluster number is advanced one, and pointer
1 is advanced until it points at an address in list 1 which
corresponds to the reference number of an O.T.U. not
yet classified. Clustering starts again and proceeds
exhaustively as described above. In Fig. 1 is set out the
layout of the vectors and their pointers at a typical
intermediate state of an analysis.

In the implementation of this algorithm in our pro-
grams for the Atlas computer, safeguards are in-
corporated to prevent single O.T.U. clusters being
allowed to form.

In Fig. 1, the sequence of the reference numbers in list 2
corresponds to the apparently random sequence in which
the rows of the similarity matrix are inspected. If the
matrix were held on magnetic tape, this method could
involve excessive tape searching and rewinding.

However, the method possesses the advantage that the
process is exhaustive, and once a cluster is formed it is
known that further inspections of the similarity matrix
will not reveal any new members of the cluster. It is

CLUSTER " 1 CLUSTER 2
Address 1 2 3 L 5 6 Vi 8 9 10 1 12
list 1 1 1 1 2 2 2 1 1 -1 1 2 1
Fointer 1 = &
Address 1 2 3 b4 5 6 Vi 8 9 10 11 12
list 2 1 2 3 12 7 8 10 L 5 6 1M

Fig. 1.

Fointer 3 = 9 Pointer 2 = 12

Tllustration of operation of vectors list 1 and list 2 and their associated pointers
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also possible to adapt the method to multi-link cluster-
ing. Once a single link cluster has been formed, it is
possible to re-examine all the rows of the similarity
matrix corresponding to the O.T.U.s in the cluster and
to reject any members who do not possess a sufficient
degree of multi-linkage with the rest of the O.T.U.s.
This process is iterative but again exhaustive. If an
O.T.U. is rejected, it is necessary to re-examine the rows
of the matrix corresponding to O.T.U.s previously
retained in the reappraisal of the cluster. This method
involves repeated and random accesses to the rows of
the matrix and is therefore unsuitable if the matrix is
held on magnetic tape.

2. Sequential calls for rows

In this method, each row of the matrix is called into the
fast store of the computer once and the maximum
amount of information is extracted. The rows are
called sequentially. The method begins as in the
random method by looking at the first row of the matrix
and identifying the O.T.U.s which are linked to O.T.U.1
and placing them in Cluster 1.

Next the 2nd row is examined. If O.T.U.2 belongs
to Cluster 1, then all O.T.U.s linked to O.T.U.2 (but not
picked up as being linked to O.T.U.1) are ascribed to
Cluster 1. If O.T.U.2 does not belong to Cluster 1,
then a new Cluster 2 is begun. The method proceeds
by this orderly inspection of the rows of the matrix. It
is necessary, however, to ‘back track’ from time to time
if it is subsequently discovered that a link exists between,
for example, an O.T.U. in Cluster 2 and an O.T.U. in
Cluster 5. In this case, all the O.T.U.s in Cluster 5
must be reassigned to Cluster 2. It is possible therefore
for an O.T.U. to be reassigned to different clusters
several times during the execution of the algorithm.

The method has been found to be very fast, and
populations exceeding 500 O.T.U.s have been success-
fully classified using a small amount of computing time.

Chaining

The process of chaining which is inherently possible
using single linkage clustering, can be described by
consideration of the hierarchical structure of an imag-
inary data set. Consider two groups present in the data,
which are separate at all levels of similarity down to S,
below which they coalesce naturally to form one group.
This situation is feasible for real data, and corresponds to
all inter-group similarities being less than S, and all
intra-group similarities being greater than S, for the two
groups.

It is more usual with real data to have a less clear cut
division between the inter and intra-group similarities,
and this leads, where single linkage clustering is
employed, to the phenomenon of chaining. A situation
can occur in which the similarity coefficients are as
described above for the imaginary data with the excep-
tion that one inter-group coefficient is above the level S,
and in fact is equal to S”.  With single linkage clustering,
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the two groups will coalesce at a level S’, and not at level
S. This could of course be overcome by using complete
linkage clustering, which for this data would yield the
desired hierarchy. As mentioned above, it is possible,
but rare, to find this type of distribution of similarity
coefficients in real data, and it is more usual to have a
wide variation in both inter and intra-group coefficients.
It will therefore not be possible to say that certain
O.T.U.s form a completely separate group, as groups
will always overlap to some extent, and it is similarly not
possible to say that a group comprises certain O.T.U.s,
and only those O.T.U.s, as there will be variations
amongst members of a group in the contribution the
0.T.U.s make to the group as a whole. In other words,
some O.T.U.s are more acceptable in a group than
others.

With real data, a process of complete linkage cluster-
ing will yield a group comprising only the core or nucleus
of the real group, and will discard peripheral objects as
outside the group, regardless of the general acceptability
of that object. This can be regarded as the reverse of
chaining, and can be shown diagrammatically as in
Fig. 2, where the fusion of two groups is shown. The
real fusion point should be at level S, the single linkage
fusion point is at S’, and the complete linkage fusion
point at S”.

Obviously, the ideal classification scheme would
cluster this data in such a way that the two main groups
coalesced at level S, having retained separate identities
up to this point. This leads to the idea of multiple
linkage or k-linkage clustering, as the general case, with
single and complete linkage being special cases of k-
linkage clustering, single linkage corresponding to k = 1,
and complete linkage corresponding to k = n, where n is
the total number of O.T.U.s in the group or groups
being considered.

The idea of k-linkage clustering can be extended

G G
M °

S e = - —— -

SIMILARITY LEVEL

Fig. 2
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directly to the initial clustering of O.T.U.s, and will
result in groups where membership of a group entails
similarity with at least kK members of that group. Ob-
viously this is not very convenient, as k will be varying
continuously, but a ratio of k£ to n can be proposed
termed N which should remain constant.

The formal average linkage clustering method attempts
to be a k-linkage method, without actually considering
links. The average linkage method of Sokal and
Michener (1958) operates by computing the average
similarity within a group, the average of all the similarity
coefficients between members of that group, and permit-
ting O.T.U.s to join that group if the group average
similarity drop after the admission of that O.T.U. is less
than a certain value. We will call the drop in group
average similarity for the addition of an O.T.U., y. The
method can be implemented in one of two ways: by
adding one O.T.U. at a time, and then recomputing the
group average similarity (Pair Group Method), or by
allowing a number of O.T.U.s to join a group at one
stage, provided all the O.T.U.s satisfy the criterion
(Variable Group Method).

It will be noted that with Average Linkage methods,
the formation of initial groups has been ignored, and
this presents the main problem of implementing the
method. The final results will depend on the starting
point chosen, and Average Linkage is therefore only a
group or cluster expansion technique.

It is important to note that chaining is liable to be
inherent in any data set, and without using a complete
linkage clustering technique the effects of the chaining
O.T.U.s cannot be avoided. Indeed, if the chaining is
overcome completely, the results will be virtually mean-
ingless, only very compact cluster centres being allowed
to form. It is therefore desirable to permit a certain
controlled amount of chaining, so that with reference to
the hierarchy, a fusion will occur, either between O.T.U.s,
or between groups, at the level S, and not at S” or S”'.

We can therefore define a degree of chaining required
for a given data set by
S-S
S =8
This represents the fraction of the maximum possible
chaining that is desirable for a given fusion. It is not
feasible to calculate this value for every fusion in the
clustering process, even if it were possible to compute a
value for S. It is feasible, though, to set a control on
the fusion process which permits a degree of chaining,
and to modify the extent of the chaining by trial runs
with the clustering algorithm. This leads to the multiple
linkage program developed by the authors.

C:

Multiple linkage algorithm

The algorithm is not intended to produce a complete
hierarchy at one pass, but is intended to provide a
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detailed analysis at one level of similarity only. It was
intended that an approximate hierarchy could be derived
using a purely single linkage analysis, and the multiple
linkage algorithm could then be employed to further
analyse data for each level of similarity which was of
interest. The method is based very broadly on an
average linkage cluster expansion method, the initial
cluster centres being formed by a modified single linkage
method.

Formation of cluster centres

Several methods are available for the formation of
cluster centres, but none of these are really acceptable.
If severe chaining is present the Centroid method can
very easily choose the wrong points as cluster centres,
and this is generally true of all geometrical methods.
The authors considered that the most acceptable way of
forming cluster centres was firstly to separate all O.T.U.s
which are likely to be at or near cluster centres, by
performing a single linkage classification, and then to
consider only those O.T.U.s which have been separated
into clusters as worthy of consideration for use as
cluster centres. The single linkage method will certainly
separate all O.T.U.s that may be useful as cluster centres,
by virtue of the fact that it clusters on the basis of only
one link being necessary between O.T.U.s within a group.

Once the data has been separated into those O.T.U.s
which might possibly be at or near cluster centres, and
those which can never be part of a cluster core, attention
can be turned to further separating the possibles into
those O.T.U.s which will be at cluster centres and those
which are peripherals, with perhaps only one or two
links within their clusters.

The final retrieval of the O.T.U.s forming cluster
centres is performed by consideration of the average
similarity each O.T.U. has with the others with which it
is supposedly clustered. A criterion is set externally to
govern the degree of compactness required within the
cluster centres, and on the basis of this, the O.T.U.s
which are computed to be within cluster centres are
separated. These O.T.U.s are then reclassified using
single linkage to obtain the cluster centres.

Extension of cluster centres

The process of extending the cluster centres to form
complete groups is based on the pair group average
similarity method. The reacceptance criterion is not
simply the drop in average similarity, which does not
directly take into account the degree of linkage, but a
factor of the percentage linkage (100 x Ng) divided by
the drop in average similarity for admission of an
O.T.U. into a group. This factor, the acceptance ratio
can be set externally and can be modified to suit different
sets of data. The extension proceeds with the addition
to each cluster centre of that O.T.U. which has the
highest corresponding acceptance ratio, the process
repeating until all acceptable O.T.U.s have been admitted.
The residual O.T.U.s are then classified by a single
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linkage analysis, to detect any small clusters that were
missed by the full classification. The results are then
output in the form of a series of groups, each consisting
of a list of O.T.U. numbers present.

Program

The program is written in version AB of Atlas Auto-
code, for use on Manchester University’s Atlas com-
puter, or any computer having facilities for COMPILER
AB, and adequate fast store. The program will not run
using version AA without modification to the main
program. The main program is at present available as a
7 track punched paper tape, and utilises multiple channel
input to accept data from a separate 5 or 7 track paper
tape (input 1). The data takes the form of parameters
which control the course of the calculation, possibly
followed by the matrix of similarities. ~Alternatively, if
the matrix is large, it can be input from private magnetic
tape.

Input
The similarity matrix can be input in two forms:

1. From paper tape, as a square matrix. Each co-
efficient is in the range 0-1000 and is punched as an
integer. At least two spaces or one newline sepa-
rates each number.

2. From private magnetic tape, stored on the tape as
an upper triangular matrix with the leading dia-
gonal present. The similarity coefficients are
packed three to an Atlas integer word. This
method must be used where the number of O.T.U.s
exceeds 200. The program retains the matrix as a
vector of packed coefficients unpacking a row of
coefficients as and when this is needed in the
calculation. The storage needed for the similarity
matrix is therefore ((m(m + 1))/6) words where m is
the dimension of the matrix. This must be
available in main store.

Use of the program

In order to use the program the following information
must be encoded on 5 or 7 track punched paper tape.

1. Job Description (see I.C.T. Document CS 460,
‘Preparing a Complete Program for Atlas 1°).

2. A list of Control Parameters.

3. The similarity matrix, if this is to be input from
paper tape.

4. ***Z terminator as required by the Atlas Super-
visor.

The control parameters

The first number on the data tape must always be the
number of O.T.U.s, i.e. the dimension of the similarity
matrix. This is followed by the three control para-
meters. These parameters provide information to the
main program on the form of the similarity matrix, the
input medium, and the form of classification required,
either single linkage only, or full classification.

D
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Parameter one

This can take two values, 1 or 2. If it is set to one, a
purely single linkage classification is performed at a
number of levels of similarity. If it is set to 2, a full
classification is performed at one level of similarity only.

Parameter two

This again can take the value 1 or 2. If it is set to 1 it
indicates to the program that the data is in the form of a
packed upper triangular matrix with the leading diagonal
present. A value of 2 indicates that the matrix is square,
and not packed.

Parameter three

This parameter indicates the input medium, 1 for
paper tape, and 2 for magnetic tape.

The control parameters are followed by several other
parameters, but the meaning and values of these will
depend on the control parameters.

Similarity levels

For Single Linkage classification only, the range of
levels of similarity is determined by three numbers, the
initial level, the final level, and a step length between
levels. An example of this might be classification at
levels 800, 700, and 600. The initial level is 800, the final
level is 600, and the step is —100. For full classification
one number only is used and this is the level at which the
classification is to be performed.

Group reduction criterion

In stage one, the groups are reduced in size to form
nuclei. The severity of this reduction process is deter-
mined by the group reduction criterion. An initial value
of 50 is suggested as being suitable for most data, but the
best value will have to be determined by trial and error.
An increase in the value will cause more O.T.U.s to be
removed from each group.

O.T.U. re-admission criterion

This is used in the second stage to determine how easy
re-admission into a group should be. An initial value
of 17 has been found to be suitable for medical or
biological data, but variations may be advisable for other
types of data. Increasing this value will result in a
stricter criterion for re-admission. A value of 17
corresponds to a drop in average similarity in the group
of 30, with the new O.T.U. linked to at least half the
existing members of that group.

Output

The output from the program gives a comprehensive
description of the results, and is adequately captioned to
enable the user to see exactly what the results mean. For
each level of similarity, a list of groups is given. The
first of these, captioned group minus one, is the residual
0O.T.U.s, i.e. those which have not been accepted into
any group. The order of the actual groups has no
significance, usually group one contains the lowest
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numbered grouped O.T.U., group two contains the next
lowest, etc.

For full classification, the results are only given at the
level specified, but this is given on the print-out as a
caption. The complete process is given, including the
results of the initial single linkage classification, the
0O.T.U.s forming the nuclei, with a classification of these
to show the actual nuclei, a list of additions made to
each of the nuclei, in the order in which these additions
were made, and a final full classification, captioned as
for the single linkage case.

The amount of output required will depend on the
data, and the ease with which it classifies, but a request
for 500 lines will be adequate for most problems.

Computing time

It is not possible to estimate the amount of computing
time required, as this will depend to a very great extent
on the number of iterations needed in the second stage.
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Book Review

Cybernetic Modelling, by J. Kur and M. VaLacH (Tr. P.
DoLaN), 1967; 437 pages. (London: lliffe Books Ltd.,
63s.)

This long, ambitious, and rather strange book was first
published in Czechoslovakia in 1965. Its characteristics are
the authors’ obvious lack of advanced computing facilities,
their ignorance of, or lack of interest in, current Western
research and their adherence to a completely materialist
viewpoint. In consequence the book has a somewhat archaic
flavour, with much time spent putting forward philosophical
and terminological arguments and introducing research ideas
now of largely historical interest.

The book begins with the sentence—‘The basis of our
world is matter, which is in continuous motion in space and
time in the widest sense of the word’. The vague generality
of this statement is fairly typical. The authors then dis-
tinguish between inanimate and animate matter, and remain
fascinated by this distinction.

The first one hundred and twenty pages are devoted
primarily to introducing and defining concepts and to
discussing the elements of what may ultimately become a
useful cybernetic theory. By ‘cybernetics’ the authors mean,
roughly, the study of the structure and behaviour of collections
of elements which interact with one another, and with their
environment. They formulate a definition of what they
mean by one system being a model of another in terms of
identity of structure and behaviour at a given level of
observation.

The next seventy pages of the book are devoted to practical
methods of modelling, primarily using analogue and digital
computers and usii.7 logical networks. The discussion of
computers concentra ¢s on the organisation of the machines
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themselves and the basic ideas of programming. Pro-
gramming languages more complex than machine code are
given only a single paragraph, and Monte Carlo methods
about a page. A simple form of time-sharing is briefly
described, as is the concept of a Turing machine.

This is followed by a long discussion in general terms of
the meaning of such words and phrases as ‘decision making’,
‘goal seeking’, ‘communication’, and ‘consciousness’, when
applied to machines, and then two specific topics are treated
at some length. The first is machine understanding of
natural language. The authors propose graphical representa-
tions of sentence and text structure and indicate how a
machine might answer questions and form abstracts by
operations over these graphs. The second topic considered
is the detection of moving objects in a visual field. The
authors propose a simple method involving the matching of
successive views. I feel that the authors’ treatment of each
of these topics contains little of interest for the informed
research worker, and yet is too special to serve as an intro-
ductory text. No actual experimentation is mentioned.

The final chapter of the book is an unimpressive excursion
into what one might call ‘Science Fiction philosophy’ con-
centrating on the difference between animate and inanimate
systems, and on the future of man and robots.

In sum, I find this book more suitable for the collector of
curios and for the graduate student with time and interest to
spare than for the research scientist, or the person requiring
an introduction to cybernetics. However, it is often thought-
provoking, and has a large bibliography with many useful
references to work in the U.S.S.R. and elsewhere.

JaMes DorAN (Edinburgh)
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